These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36133754)
41. Investigation and optimization of Fe/ZnFe Wu G; Zhang H; Luo X; Yang L; Lv H J Colloid Interface Sci; 2019 Feb; 536():548-555. PubMed ID: 30388532 [TBL] [Abstract][Full Text] [Related]
42. Manufacturing of a Magnetic Composite Flexible Filament and Optimization of a 3D Printed Wideband Electromagnetic Multilayer Absorber in X-Ku Frequency Bands. Vong C; Chevalier A; Maalouf A; Ville J; Rosnarho JF; Laur V Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591650 [TBL] [Abstract][Full Text] [Related]
43. Enhanced Microwave Absorption Bandwidth in Graphene-Encapsulated Iron Nanoparticles with Core-Shell Structure. Zhang D; Deng Y; Han C; Zhu H; Yan C; Zhang H Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32408500 [TBL] [Abstract][Full Text] [Related]
44. Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe Chen J; Zheng J; Huang Q; Wang F; Ji G ACS Appl Mater Interfaces; 2021 Aug; 13(30):36182-36189. PubMed ID: 34291899 [TBL] [Abstract][Full Text] [Related]
45. Microwave Absorption of α-Fe Zhang C; Wang D; Dong L; Li K; Zhang Y; Yang P; Yi S; Dai X; Yin C; Du Z; Zhang X; Zhou Q; Yi Z; Rao J; Zhang Y Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012621 [TBL] [Abstract][Full Text] [Related]
46. Multidimension-Controllable Synthesis of MOF-Derived Co@N-Doped Carbon Composite with Magnetic-Dielectric Synergy toward Strong Microwave Absorption. Huang M; Wang L; Pei K; You W; Yu X; Wu Z; Che R Small; 2020 Apr; 16(14):e2000158. PubMed ID: 32182407 [TBL] [Abstract][Full Text] [Related]
47. Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. Huang M; Wang L; You W; Che R Small; 2021 Jul; 17(30):e2101416. PubMed ID: 34159720 [TBL] [Abstract][Full Text] [Related]
48. Heterostructure Composites of CoS Nanoparticles Decorated on Ti Liu H; Li L; Cui G; Wang X; Zhang Z; Lv X Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32858800 [TBL] [Abstract][Full Text] [Related]
49. Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. He L; Zhao Y; Xing L; Liu P; Wang Z; Zhang Y; Wang Y; Du Y RSC Adv; 2018 Jan; 8(6):2971-2977. PubMed ID: 35541211 [TBL] [Abstract][Full Text] [Related]
50. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption. Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064 [TBL] [Abstract][Full Text] [Related]
51. Hierarchical engineering of Large-caliber carbon Nanotube/Mesoporous Carbon/Fe Ban Q; Li Y; Qin Y; Zheng Y; Xie X; Yu Z; Kong J J Colloid Interface Sci; 2022 Jun; 616():618-630. PubMed ID: 35240440 [TBL] [Abstract][Full Text] [Related]
52. Facile synthesis and microwave absorption investigation of activated carbon@Fe Yin P; Deng Y; Zhang L; Li N; Feng X; Wang J; Zhang Y RSC Adv; 2018 Jun; 8(41):23048-23057. PubMed ID: 35540128 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers. Shu R; Xu J; Wan Z; Cao X J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2994-3003. PubMed ID: 34802762 [TBL] [Abstract][Full Text] [Related]
54. Improvement of multiple attenuation characteristics of two-dimensional lamellar ferrocobalt@carbon nanocomposites as excellent electromagnetic wave absorbers. Pan J; Tu W; Ma S; Sun X; Zhao Q; Qu H; Wang T; He J Dalton Trans; 2022 Jun; 51(25):9793-9802. PubMed ID: 35704940 [TBL] [Abstract][Full Text] [Related]
55. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber. Singh SK; Akhtar MJ; Kar KK ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041 [TBL] [Abstract][Full Text] [Related]
56. Fabrication of NiFe Feng A; Ma M; Jia Z; Zhang M; Wu G RSC Adv; 2019 Aug; 9(44):25932-25941. PubMed ID: 35530055 [TBL] [Abstract][Full Text] [Related]
57. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route. Zhao HB; Fu ZB; Chen HB; Zhong ML; Wang CY ACS Appl Mater Interfaces; 2016 Jan; 8(2):1468-77. PubMed ID: 26710881 [TBL] [Abstract][Full Text] [Related]
58. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness. Shu R; Li N; Li X; Sun J J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1918-1927. PubMed ID: 34695759 [TBL] [Abstract][Full Text] [Related]
59. One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption. Yang B; Fang J; Xu C; Cao H; Zhang R; Zhao B; Huang M; Wang X; Lv H; Che R Nanomicro Lett; 2022 Aug; 14(1):170. PubMed ID: 35987921 [TBL] [Abstract][Full Text] [Related]
60. Synthesis and microwave absorption properties of Fe@carbon fibers. Zhang X; Qi S; Zhao Y; Wang L; Fu J; Yu M RSC Adv; 2020 Sep; 10(54):32561-32568. PubMed ID: 35516479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]