These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 36133772)

  • 1. Understanding nano-engineered particle-cell interactions: biological insights from mathematical models.
    Johnston ST; Faria M; Crampin EJ
    Nanoscale Adv; 2021 Apr; 3(8):2139-2156. PubMed ID: 36133772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equation learning to identify nano-engineered particle-cell interactions: an interpretable machine learning approach.
    Johnston ST; Faria M
    Nanoscale; 2022 Nov; 14(44):16502-16515. PubMed ID: 36314284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating the sources of heterogeneity in nano-engineered particle-cell interactions.
    Johnston ST; Faria M; Crampin EJ
    J R Soc Interface; 2020 May; 17(166):20200221. PubMed ID: 32429827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.
    Cui J; Richardson JJ; Björnmalm M; Faria M; Caruso F
    Acc Chem Res; 2016 Jun; 49(6):1139-48. PubMed ID: 27203418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics.
    Sarkar A; Zhang S; Holmes M; Ettelaie R
    Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting cell-particle association in vitro: A quantitative method to compare particle performance.
    Faria M; Noi KF; Dai Q; Björnmalm M; Johnston ST; Kempe K; Caruso F; Crampin EJ
    J Control Release; 2019 Aug; 307():355-367. PubMed ID: 31247281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
    Wei C; Xia S; Huang H; Mao Y; Pianetta P; Liu Y
    Acc Chem Res; 2018 Oct; 51(10):2484-2492. PubMed ID: 29889493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces.
    Marino E; LaCour RA; Kodger TE
    Cryst Growth Des; 2024 Jul; 24(14):6060-6080. PubMed ID: 39044735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On predicting heterogeneity in nanoparticle dosage.
    Dowling CV; Cevaal PM; Faria M; Johnston ST
    Math Biosci; 2022 Dec; 354():108928. PubMed ID: 36334785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in silica nanoparticles upon internalisation by cells: size, aggregation/agglomeration state, mass- and number-based concentrations.
    Bartczak D; Davies J; Gollwitzer C; Krumrey M; Goenaga-Infante H
    Toxicol Res (Camb); 2018 Mar; 7(2):172-181. PubMed ID: 30090572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and
    Song J; Ju Y; Amarasena TH; Lin Z; Mettu S; Zhou J; Rahim MA; Ang CS; Cortez-Jugo C; Kent SJ; Caruso F
    ACS Nano; 2021 Jun; 15(6):10025-10038. PubMed ID: 34009935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.
    Yanamala N; Kagan VE; Shvedova AA
    Adv Drug Deliv Rev; 2013 Dec; 65(15):2070-7. PubMed ID: 23726945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles.
    Xu Z; Liu XW; Ma YS; Gao HW
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):798-806. PubMed ID: 19390888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
    Wang Y; Cai R; Chen C
    Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SysBioMed report: advancing systems biology for medical applications.
    Wolkenhauer O; Fell D; De Meyts P; Blüthgen N; Herzel H; Le Novère N; Höfer T; Schürrle K; van Leeuwen I
    IET Syst Biol; 2009 May; 3(3):131-6. PubMed ID: 19449974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel experimental chamber for the characterization of free-falling particles in volcanic plumes.
    Capponi A; Lane SJ; Gilbert JS; Macfarlane DG; Robertson DA; James MR
    Rev Sci Instrum; 2022 Jul; 93(7):075105. PubMed ID: 35922336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix.
    Vitale S; Rampazzo E; Hiebner D; Devlin H; Quinn L; Prodi L; Casey E
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34502-34512. PubMed ID: 35830504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.