These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 36133831)
1. Thermal conductivity measurements of thin films by non-contact scanning thermal microscopy under ambient conditions. Zhang Y; Zhu W; Borca-Tasciuc T Nanoscale Adv; 2021 Feb; 3(3):692-702. PubMed ID: 36133831 [TBL] [Abstract][Full Text] [Related]
2. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions. Zhang Y; Zhu W; Han L; Borca-Tasciuc T Rev Sci Instrum; 2020 Jan; 91(1):014901. PubMed ID: 32012522 [TBL] [Abstract][Full Text] [Related]
3. Scanning thermal microscopy with heat conductive nanowire probes. Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005 [TBL] [Abstract][Full Text] [Related]
4. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Wilson AA; Borca-Tasciuc T Rev Sci Instrum; 2017 Jul; 88(7):074903. PubMed ID: 28764517 [TBL] [Abstract][Full Text] [Related]
5. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies. Wilson AA; Muñoz Rojo M; Abad B; Perez JA; Maiz J; Schomacker J; Martín-Gonzalez M; Borca-Tasciuc DA; Borca-Tasciuc T Nanoscale; 2015 Oct; 7(37):15404-12. PubMed ID: 26335503 [TBL] [Abstract][Full Text] [Related]
6. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy. Ge Y; Zhang Y; Weaver JMR; Dobson PS Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Measurement of Thermal Conductivity by SThM Technique: Measurements, Calibration Protocols and Uncertainty Evaluation. Fleurence N; Demeyer S; Allard A; Douri S; Hay B Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686932 [TBL] [Abstract][Full Text] [Related]
8. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness. Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956 [TBL] [Abstract][Full Text] [Related]
9. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films. Kondratenko K; Guérin D; Wallart X; Lenfant S; Vuillaume D Nanoscale; 2022 Apr; 14(16):6075-6084. PubMed ID: 35383814 [TBL] [Abstract][Full Text] [Related]
11. Realizing the Accurate Measurements of Thermal Conductivity over a Wide Range by Scanning Thermal Microscopy Combined with Quantitative Prediction of Thermal Contact Resistance. Zhang Q; Zhu W; Zhou J; Deng Y Small; 2023 Aug; 19(32):e2300968. PubMed ID: 37066734 [TBL] [Abstract][Full Text] [Related]
12. Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis. Juszczyk J; Kaźmierczak-Bałata A; Firek P; Bodzenta J Ultramicroscopy; 2017 Apr; 175():81-86. PubMed ID: 28157667 [TBL] [Abstract][Full Text] [Related]
13. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation. Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale heat transport analysis by scanning thermal microscopy: from calibration to high-resolution measurements. Vera-Londono L; Ruiz-Clavijo A; Pérez-Taborda JA; Martín-González M Nanoscale Adv; 2022 Jul; 4(15):3194-3211. PubMed ID: 36132820 [TBL] [Abstract][Full Text] [Related]
15. Steady-state methods for measuring in-plane thermal conductivity of thin films for heat spreading applications. Hines NJ; Yates L; Foley BM; Cheng Z; Bougher TL; Goorsky MS; Hobart KD; Feygelson TI; Tadjer MJ; Graham S Rev Sci Instrum; 2021 Apr; 92(4):044907. PubMed ID: 34243450 [TBL] [Abstract][Full Text] [Related]
16. Effect of microstructure on thermal conductivity of Cu, Ag thin films. Ryu S; Juhng W; Kim Y J Nanosci Nanotechnol; 2010 May; 10(5):3406-11. PubMed ID: 20358967 [TBL] [Abstract][Full Text] [Related]
17. Thermal Conductivity of β-Phase Ga Song Y; Ranga P; Zhang Y; Feng Z; Huang HL; Santia MD; Badescu SC; Gonzalez-Valle CU; Perez C; Ferri K; Lavelle RM; Snyder DW; Klein BA; Deitz J; Baca AG; Maria JP; Ramos-Alvarado B; Hwang J; Zhao H; Wang X; Krishnamoorthy S; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Aug; 13(32):38477-38490. PubMed ID: 34370459 [TBL] [Abstract][Full Text] [Related]