These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36133858)

  • 21. Sulfated Cellulose Nanofibrils from Chlorosulfonic Acid Treatment and Their Wet Spinning into High-Strength Fibers.
    Pingrey B; Hsieh YL
    Biomacromolecules; 2022 Mar; 23(3):1269-1277. PubMed ID: 35148066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropic nanocellulose gel-membranes for drug delivery: Tailoring structure and interface by sequential periodate-chlorite oxidation.
    Plappert SF; Liebner FW; Konnerth J; Nedelec JM
    Carbohydr Polym; 2019 Dec; 226():115306. PubMed ID: 31582054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resource-Saving Production of Dialdehyde Cellulose: Optimization of the Process at High Pulp Consistency.
    Lucia A; van Herwijnen HWG; Oberlerchner JT; Rosenau T; Beaumont M
    ChemSusChem; 2019 Oct; 12(20):4679-4684. PubMed ID: 31373765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties.
    Sirviö JA; Hasa T; Ahola J; Liimatainen H; Niinimäki J; Hormi O
    Carbohydr Polym; 2015 Nov; 133():524-32. PubMed ID: 26344310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials.
    Zhou M; Chen D; Chen Q; Chen P; Song G; Chang C
    Adv Mater; 2024 May; 36(21):e2312220. PubMed ID: 38288877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile production of cellulose nanofibers from raw elephant grass by an aluminum chloride-enhanced acidic deep eutectic solvent.
    Yuan JC; Huang R; Jiang LY; Liu GD; Liu PD; Xu WR
    Int J Biol Macromol; 2023 Aug; 246():125687. PubMed ID: 37406902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications.
    Sun X; Jiang F
    Carbohydr Polym; 2024 Oct; 341():122305. PubMed ID: 38876711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive investigation on modified cellulose nanocrystals and their films properties.
    El Miri N; Heggset EB; Wallsten S; Svedberg A; Syverud K; Norgren M
    Int J Biol Macromol; 2022 Oct; 219():998-1008. PubMed ID: 35963351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers.
    Sirviö JA; Liimatainen H; Visanko M; Niinimäki J
    Carbohydr Polym; 2014 Dec; 114():73-77. PubMed ID: 25263866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal.
    Lee H; You J; Jin HJ; Kwak HW
    Carbohydr Polym; 2020 Mar; 232():115771. PubMed ID: 31952584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of ulvans via periodate-chlorite oxidation: Chemical characterization and anticoagulant activity.
    de Carvalho MM; de Freitas RA; Ducatti DRB; Ferreira LG; Gonçalves AG; Colodi FG; Mazepa E; Aranha EM; Noseda MD; Duarte MER
    Carbohydr Polym; 2018 Oct; 197():631-640. PubMed ID: 30007656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recyclable deep eutectic solvent for the production of cationic nanocelluloses.
    Li P; Sirviö JA; Asante B; Liimatainen H
    Carbohydr Polym; 2018 Nov; 199():219-227. PubMed ID: 30143124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils.
    Erlandsson J; Françon H; Marais A; Granberg H; Wågberg L
    Biomacromolecules; 2019 Feb; 20(2):728-737. PubMed ID: 30394086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution.
    Abou-Zeid RE; Dacrory S; Ali KA; Kamel S
    Int J Biol Macromol; 2018 Nov; 119():207-214. PubMed ID: 30036619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red.
    Guan Y; Rao J; Wu Y; Gao H; Liu S; Chen G; Peng F
    Int J Biol Macromol; 2020 Jul; 155():369-375. PubMed ID: 32240739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties.
    Jiang S; Zhang M; Jiang W; Xu Q; Yu J; Liu L; Liu L
    Carbohydr Polym; 2020 Nov; 247():116701. PubMed ID: 32829829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses.
    Li T; Zhong Q; Zhao B; Lenaghan S; Wang S; Wu T
    Carbohydr Polym; 2020 Apr; 234():115863. PubMed ID: 32070502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.