These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36133890)

  • 1. A comparative study of silver nanoparticle dissolution under physiological conditions.
    Steinmetz L; Geers C; Balog S; Bonmarin M; Rodriguez-Lorenzo L; Taladriz-Blanco P; Rothen-Rutishauser B; Petri-Fink A
    Nanoscale Adv; 2020 Dec; 2(12):5760-5768. PubMed ID: 36133890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dissolution and biological effects of silver nanoparticles in biological media.
    Loza K; Diendorf J; Sengstock C; Ruiz-Gonzalez L; Gonzalez-Calbet JM; Vallet-Regi M; Köller M; Epple M
    J Mater Chem B; 2014 Mar; 2(12):1634-1643. PubMed ID: 32261391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Quantification of Silver Nanoparticle Dissolution Kinetics in Simulated Sweat Using Linear Sweep Stripping Voltammetry.
    Hui J; O'Dell ZJ; Rao A; Riley KR
    Environ Sci Technol; 2019 Nov; 53(22):13117-13125. PubMed ID: 31644870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and transformation of silver nanoparticles in different biological conditions.
    Pem B; Ćurlin M; Domazet Jurašin D; Vrček V; Barbir R; Micek V; Fratila RM; de la Fuente JM; Vinković Vrček I
    Beilstein J Nanotechnol; 2021; 12():665-679. PubMed ID: 34327112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.
    Eskelsen JR; Xu J; Chiu M; Moon JW; Wilkins B; Graham DE; Gu B; Pierce EM
    Environ Sci Technol; 2018 Feb; 52(3):1139-1149. PubMed ID: 29258315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study of the Biodurability and Persistence of Gold, Silver and Titanium Dioxide Nanoparticles Using the Continuous Flow through System.
    Mbanga O; Cukrowska E; Gulumian M
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer.
    Maciollek A; Ritter H
    Beilstein J Nanotechnol; 2014; 5():380-5. PubMed ID: 24778963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.
    Zook JM; Long SE; Cleveland D; Geronimo CL; MacCuspie RI
    Anal Bioanal Chem; 2011 Oct; 401(6):1993-2002. PubMed ID: 21808990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.
    Li Y; Zhang W; Niu J; Chen Y
    Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation.
    Gondikas AP; Morris A; Reinsch BC; Marinakos SM; Lowry GV; Hsu-Kim H
    Environ Sci Technol; 2012 Jul; 46(13):7037-45. PubMed ID: 22448900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation kinetics and dissolution of coated silver nanoparticles.
    Li X; Lenhart JJ; Walker HW
    Langmuir; 2012 Jan; 28(2):1095-104. PubMed ID: 22149007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions.
    Bélteky P; Rónavári A; Zakupszky D; Boka E; Igaz N; Szerencsés B; Pfeiffer I; Vágvölgyi C; Kiricsi M; Kónya Z
    Int J Nanomedicine; 2021; 16():3021-3040. PubMed ID: 33935497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Evaluation of the Impacts of Surface Coatings on Silver Nanoparticle Dissolution Rates.
    Liu C; Leng W; Vikesland PJ
    Environ Sci Technol; 2018 Mar; 52(5):2726-2734. PubMed ID: 29381855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems.
    Thomas DG; Smith JN; Thrall BD; Baer DR; Jolley H; Munusamy P; Kodali V; Demokritou P; Cohen J; Teeguarden JG
    Part Fibre Toxicol; 2018 Jan; 15(1):6. PubMed ID: 29368623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution-accompanied aggregation kinetics of silver nanoparticles.
    Li X; Lenhart JJ; Walker HW
    Langmuir; 2010 Nov; 26(22):16690-8. PubMed ID: 20879768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.
    Kreyling WG; Holzwarth U; Hirn S; Schleh C; Wenk A; Schäffler M; Haberl N; Gibson N
    Part Fibre Toxicol; 2020 Jun; 17(1):21. PubMed ID: 32503677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.