BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36134008)

  • 1. Diatom frustules enhancing the efficiency of gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes.
    Bandara TMWJ; Furlani M; Albinsson I; Wulff A; Mellander BE
    Nanoscale Adv; 2020 Jan; 2(1):199-209. PubMed ID: 36134008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.
    Goessling JW; Su Y; Cartaxana P; Maibohm C; Rickelt LF; Trampe ECL; Walby SL; Wangpraseurt D; Wu X; Ellegaard M; Kühl M
    New Phytol; 2018 Jul; 219(1):122-134. PubMed ID: 29672846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules.
    Chen X; Wang C; Baker E; Sun C
    Sci Rep; 2015 Jul; 5():11977. PubMed ID: 26155924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: a new application for microalgae.
    Mohammadpour R; Janfaza S; Abbaspour-Aghdam F
    Bioresour Technol; 2014 Jul; 163():1-5. PubMed ID: 24768904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica Nanowire Growth on Coscinodiscus Species Diatom Frustules via Vapor-Liquid-Solid Process.
    Li A; Zhao X; Anderson S; Zhang X
    Small; 2018 Nov; 14(47):e1801822. PubMed ID: 30369025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.
    Jin M; Kim SS; Yoon M; Li Z; Lee YY; Kim JM
    J Nanosci Nanotechnol; 2012 Jan; 12(1):815-21. PubMed ID: 22524063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diatom frustules as light traps enhance DSSC efficiency.
    Toster J; Iyer KS; Xiang W; Rosei F; Spiccia L; Raston CL
    Nanoscale; 2013 Feb; 5(3):873-6. PubMed ID: 23152116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Scattering Layer on the Performance of Dye-Sensitized Solar Cells Using TiO2 Hollow Spheres/TiO2 Nanoparticles Films as Photoanodes.
    Park SK; Suh SH; Lee MW; Yun TK; Bae JY
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8295-8. PubMed ID: 26726506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of TiO2 nanoparticle-accumulated bilayer photoelectrode and condenser lens-assisted solar concentrator on light harvesting in dye-sensitized solar cells.
    Moon KJ; Lee SW; Lee YH; Kim JH; Ahn JY; Lee SJ; Lee DW; Kim SH
    Nanoscale Res Lett; 2013 Jun; 8(1):283. PubMed ID: 23758633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties.
    Kim JY; Noh JH; Zhu K; Halverson AF; Neale NR; Park S; Hong KS; Frank AJ
    ACS Nano; 2011 Apr; 5(4):2647-56. PubMed ID: 21395234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres.
    Hoang S; Ngo TQ; Berglund SP; Fullon RR; Ekerdt JG; Mullins CB
    Chemphyschem; 2013 Jul; 14(10):2270-6. PubMed ID: 23512241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Au Nanoparticles and Scattering Layer in Dye-Sensitized Solar Cells Based on Freestanding TiO
    Lee KH; Han SH; Chuquer A; Yang HY; Kim J; Pham XH; Yun WJ; Jun BH; Rho WY
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33513974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Gold Nanoparticle Distribution in TiO
    Mayumi S; Ikeguchi Y; Nakane D; Ishikawa Y; Uraoka Y; Ikeguchi M
    Nanoscale Res Lett; 2017 Aug; 12(1):513. PubMed ID: 28853056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells.
    Villanueva-Cab J; Olalde-Velasco P; Romero-Contreras A; Zhuo Z; Pan F; Rodil SE; Yang W; Pal U
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31374-31383. PubMed ID: 30129358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.
    Ahn JY; Moon KJ; Kim JH; Lee SH; Kang JW; Lee HW; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):903-9. PubMed ID: 24377279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-Controlled TiO
    Lim SM; Moon J; Baek UC; Lee JY; Chae Y; Park JT
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33916761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell.
    Habibi MH; Karimi B; Zendehdel M; Habibi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():374-80. PubMed ID: 23973582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the dye-sensitized solar cell performance by mechanical compression.
    Meen TH; Tsai JK; Tu YS; Wu TC; Hsu WD; Chang SJ
    Nanoscale Res Lett; 2014; 9(1):523. PubMed ID: 25276109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen doping on the performance of dye-sensitized solar cells composed of mesoporous TiO2 photoelectrodes.
    Eom KH; Yun TK; Hong JY; Bae JY; Huh S; Won YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9362-7. PubMed ID: 25971066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.