These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36134161)

  • 1. All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors.
    Ding Z; Mei X; Wang X
    Nanoscale Adv; 2021 May; 3(9):2529-2537. PubMed ID: 36134161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon.
    Li Z; Bu F; Wei J; Yao W; Wang L; Chen Z; Pan D; Wu M
    Nanoscale; 2018 Dec; 10(48):22871-22883. PubMed ID: 30488932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterostructural Graphene Quantum Dot/MnO
    Jia H; Cai Y; Lin J; Liang H; Qi J; Cao J; Feng J; Fei W
    Adv Sci (Weinh); 2018 May; 5(5):1700887. PubMed ID: 29876214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes.
    Zhang S; Sui L; Dong H; He W; Dong L; Yu L
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12983-12991. PubMed ID: 29569891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the energy storage performance of V
    Ganganboina AB; Park EY; Doong RA
    Nanoscale; 2020 Aug; 12(32):16944-16955. PubMed ID: 32776060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors.
    Chen Q; Hu Y; Hu C; Cheng H; Zhang Z; Shao H; Qu L
    Phys Chem Chem Phys; 2014 Sep; 16(36):19307-13. PubMed ID: 25100222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors.
    Zhao J; Zhu J; Li Y; Wang L; Dong Y; Jiang Z; Fan C; Cao Y; Sheng R; Liu A; Zhang S; Song H; Jia D; Fan Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11669-11678. PubMed ID: 32057233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal Synthesis of Graphene Quantum Dots Supported on Three-Dimensional Graphene for Supercapacitors.
    Luo P; Guan X; Yu Y; Li X; Yan F
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30720724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylene blue functionalized graphene as binder-free electrode for high-performance solid state supercapacitors.
    Deng L; Zhou C; Ma Z; Fan G
    J Colloid Interface Sci; 2020 Mar; 561():416-425. PubMed ID: 31740132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers.
    Liu W; Yan X; Chen J; Feng Y; Xue Q
    Nanoscale; 2013 Jul; 5(13):6053-62. PubMed ID: 23720009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave synthesis of histidine-functionalized graphene quantum dots/Ni-Co LDH with flower ball structure for supercapacitor.
    Qiu H; Sun X; An S; Lan D; Cui J; Zhang Y; He W
    J Colloid Interface Sci; 2020 May; 567():264-273. PubMed ID: 32062489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance.
    Du FP; Wang JJ; Tang CY; Tsui CP; Zhou XP; Xie XL; Liao YG
    Nanotechnology; 2012 Nov; 23(47):475704. PubMed ID: 23103878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials.
    Ahmad H; Khan RA; Koo BH; Alsalme A
    RSC Adv; 2022 May; 12(24):15593-15600. PubMed ID: 35685184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized Graphene Quantum Dot Modification of Yolk-Shell NiO Microspheres for Superior Lithium Storage.
    Yin X; Chen H; Zhi C; Sun W; Lv LP; Wang Y
    Small; 2018 May; 14(22):e1800589. PubMed ID: 29687604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erbium-Doped GQD-Embedded Coffee-Ground-Derived Porous Biochar for Highly Efficient Asymmetric Supercapacitor.
    Bui TAN; Huynh TV; Tran HL; Doong RA
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Specific Capacitance Properties of Sulfur, Nitrogen Co-Doped Graphene Quantum Dots.
    Ouyang Z; Lei Y; Chen Y; Zhang Z; Jiang Z; Hu J; Lin Y
    Nanoscale Res Lett; 2019 Jul; 14(1):219. PubMed ID: 31263974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass production of highly-porous graphene for high-performance supercapacitors.
    Amiri A; Shanbedi M; Ahmadi G; Eshghi H; Kazi SN; Chew BT; Savari M; Zubir MN
    Sci Rep; 2016 Sep; 6():32686. PubMed ID: 27604639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability.
    Lu C; Meng J; Zhang J; Chen X; Du M; Chen Y; Hou C; Wang J; Ju A; Wang X; Qiu Y; Wang S; Zhang K
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25205-25217. PubMed ID: 31268652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.