These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36134168)

  • 41. Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule.
    Ibrahim M; Garcia MA; Vono LL; Guerrero M; Lecante P; Rossi LM; Philippot K
    Dalton Trans; 2016 Nov; 45(44):17782-17791. PubMed ID: 27767201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A silica-supported, switchable, and recyclable hydroformylation-hydrogenation catalyst.
    Sandee AJ; Reek JN; Kamer PC; van Leeuwen PW
    J Am Chem Soc; 2001 Sep; 123(35):8468-76. PubMed ID: 11525653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogenation of arenes over silica-supported catalysts that combine a grafted rhodium complex and palladium nanoparticles: evidence for substrate activation on Rh(single-site)-Pd(metal) moieties.
    Barbaro P; Bianchini C; Dal Santo V; Meli A; Moneti S; Psaro R; Scaffidi A; Sordelli L; Vizza F
    J Am Chem Soc; 2006 May; 128(21):7065-76. PubMed ID: 16719488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene.
    Vollmer C; Redel E; Abu-Shandi K; Thomann R; Manyar H; Hardacre C; Janiak C
    Chemistry; 2010 Mar; 16(12):3849-58. PubMed ID: 20187043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rationally synthesized five-fold twinned core-shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide.
    Khi NT; Baik H; Lee H; Yoon J; Sohn JH; Lee K
    Nanoscale; 2014 Oct; 6(19):11007-12. PubMed ID: 25125204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chameleon Multienvironment Nanoreactors.
    Jia H; Chen Z; Yan S; Lucaccioni F; Kochovski Z; Lu Y; Friebe C; Schubert US; Gohy JF
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20166-20174. PubMed ID: 37058326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A General Approach To Fabricate Fe3O4 Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions, Hydrogenation, and Sequential Reactions.
    Gonzàlez de Rivera F; Angurell I; Rossell MD; Erni R; Llorca J; Divins NJ; Muller G; Seco M; Rossell O
    Chemistry; 2013 Sep; 19(36):11963-74. PubMed ID: 23868578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhodium(0) nanoparticles supported on nanocrystalline hydroxyapatite: highly effective catalytic system for the solvent-free hydrogenation of aromatics at room temperature.
    Zahmakıran M; Román-Leshkov Y; Zhang Y
    Langmuir; 2012 Jan; 28(1):60-4. PubMed ID: 22145782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of Efficient Hydrogenation Nanoreactors by Modifying the Freedom of Ultrasmall Platinum Nanoparticles within Yolk-Shell Nanospheres.
    Peng J; Lan G; Guo M; Wei X; Li C; Yang Q
    Chemistry; 2015 Jul; 21(29):10490-6. PubMed ID: 26094810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anisole hydrogenation with well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters: effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity.
    Widegren JA; Finke RG
    Inorg Chem; 2002 Mar; 41(6):1558-72. PubMed ID: 11896725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insight into the mechanism of hydrogenation of amino acids to amino alcohols catalyzed by a heterogeneous MoO(x) -modified Rh catalyst.
    Tamura M; Tamura R; Takeda Y; Nakagawa Y; Tomishige K
    Chemistry; 2015 Feb; 21(7):3097-107. PubMed ID: 25556992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective hydrogenation of α-ketoesters catalyzed by cinchona alkaloid stabilized Rh nanoparticles in ionic liquid.
    Jiang HY; Xu J; Sun B
    Chirality; 2019 Oct; 31(10):818-823. PubMed ID: 31310386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodium-catalyzed asymmetric hydrogenation of functionalized olefins using monodentate spiro phosphoramidite ligands.
    Fu Y; Guo XX; Zhu SF; Hu AG; Xie JH; Zhou QL
    J Org Chem; 2004 Jul; 69(14):4648-55. PubMed ID: 15230585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability.
    Konuspayeva Z; Afanasiev P; Nguyen TS; Di Felice L; Morfin F; Nguyen NT; Nelayah J; Ricolleau C; Li ZY; Yuan J; Berhault G; Piccolo L
    Phys Chem Chem Phys; 2015 Nov; 17(42):28112-20. PubMed ID: 25765742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a continuous-flow system for asymmetric hydrogenation using self-supported chiral catalysts.
    Shi L; Wang X; Sandoval CA; Wang Z; Li H; Wu J; Yu L; Ding K
    Chemistry; 2009 Sep; 15(38):9855-67. PubMed ID: 19685536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature.
    Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F
    J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: highly active hydrogenation catalysts.
    García S; Zhang L; Piburn GW; Henkelman G; Humphrey SM
    ACS Nano; 2014 Nov; 8(11):11512-21. PubMed ID: 25347078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of 2-Propanol on the Transfer Hydrogenation of Aldehydes by Aqueous Sodium Formate using a Rhodium(I)-sulfonated Triphenylphosphine Catalyst.
    Kathó Á; Szatmári I; Papp G; Joó F
    Chimia (Aarau); 2015; 69(6):339-44. PubMed ID: 26507479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (Co
    Rengshausen S; Van Stappen C; Levin N; Tricard S; Luska KL; DeBeer S; Chaudret B; Bordet A; Leitner W
    Small; 2021 Feb; 17(5):e2006683. PubMed ID: 33346403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.