These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36134248)

  • 21. Realization of Vertically Aligned, Ultrahigh Aspect Ratio InAsSb Nanowires on Graphite.
    Anyebe EA; Sanchez AM; Hindmarsh S; Chen X; Shao J; Rajpalke MK; Veal TD; Robinson BJ; Kolosov O; Anderson F; Sundaram R; Wang ZM; Falko V; Zhuang Q
    Nano Lett; 2015 Jul; 15(7):4348-55. PubMed ID: 26086785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.
    Gutsche C; Lysov A; Regolin I; Blekker K; Prost W; Tegude FJ
    Nanoscale Res Lett; 2011 Dec; 6(1):65. PubMed ID: 27502686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process.
    Ishiyama T; Nakagawa S; Wakamatsu T
    Sci Rep; 2016 Jul; 6():30608. PubMed ID: 27465800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps.
    Lee SH; Jo G; Park W; Lee S; Kim YS; Cho BK; Lee T; Bae Kim W
    ACS Nano; 2010 Apr; 4(4):1829-36. PubMed ID: 20235570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth kinetics of crumb-like structure formation on SnO
    Alangadu Kothandan V; Shao-Fu C; Zhong-You L; Shih-Hsun C
    Heliyon; 2023 Oct; 9(10):e20519. PubMed ID: 37810868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective Growth of Stacking Fault Free ⟨100⟩ Nanowires on a Polycrystalline Substrate for Energy Conversion Application.
    Zhang K; Abbas Y; Jan SU; Gao L; Ma Y; Mi Z; Liu X; Xuan Y; Gong JR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17676-17685. PubMed ID: 32212680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.
    Ji X; Yang X; Du W; Pan H; Yang T
    Nano Lett; 2016 Dec; 16(12):7580-7587. PubMed ID: 27960521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near Full-Composition-Range High-Quality GaAs
    Li L; Pan D; Xue Y; Wang X; Lin M; Su D; Zhang Q; Yu X; So H; Wei D; Sun B; Tan P; Pan A; Zhao J
    Nano Lett; 2017 Feb; 17(2):622-630. PubMed ID: 28103038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the Synergetic Performance of Nanostructured CeO
    Jayachandran V; Dhandapani VS; Muniappan E; Park D; Kim B; Arun AP; Ayyappan PR
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and optical properties of mesoporous SnO2 nanowire arrays.
    Jin Z; Fei GT; Cao XL; Wang XW
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5471-4. PubMed ID: 21125921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and optical properties of tin oxide branched nanostructures.
    Jeedigunta S; Singh MK; Kumar A; Zekri S; Bumgarner J; Rossie B
    J Nanosci Nanotechnol; 2006 Mar; 6(3):640-3. PubMed ID: 16573115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sb-saturated high-temperature growth of extended, self-catalyzed GaAsSb nanowires on silicon with high quality.
    Schmiedeke P; Döblinger M; Meinhold-Heerlein MA; Doganlar C; Finley JJ; Koblmüller G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-catalyzed epitaxial growth of vertical indium phosphide nanowires on silicon.
    Gao L; Woo RL; Liang B; Pozuelo M; Prikhodko S; Jackson M; Goel N; Hudait MK; Huffaker DL; Goorsky MS; Kodambaka S; Hicks RF
    Nano Lett; 2009 Jun; 9(6):2223-8. PubMed ID: 19413340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An excellent enzyme biosensor based on Sb-doped SnO2 nanowires.
    Li L; Huang J; Wang T; Zhang H; Liu Y; Li J
    Biosens Bioelectron; 2010 Jul; 25(11):2436-41. PubMed ID: 20418091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High quality GaAs nanowires grown on glass substrates.
    Dhaka V; Haggren T; Jussila H; Jiang H; Kauppinen E; Huhtio T; Sopanen M; Lipsanen H
    Nano Lett; 2012 Apr; 12(4):1912-8. PubMed ID: 22432446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.
    Nimmatoori P; Zhang Q; Dickey EC; Redwing JM
    Nanotechnology; 2009 Jan; 20(2):025607. PubMed ID: 19417276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
    Tran VD; Nguyen DH; Nguyen VD; Nguyen VH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature.
    Dong H; Zhang X; Niu Z; Zhao D; Li J; Cai L; Zhou W; Xie S
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1300-3. PubMed ID: 23646624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.