These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36134284)

  • 1. Mechanistic insights into surface contribution towards heat transfer in a nanofluid.
    Singh A; Lenin R; Bari NK; Bakli C; Bera C
    Nanoscale Adv; 2020 Aug; 2(8):3507-3513. PubMed ID: 36134284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background.
    Wohld J; Beck J; Inman K; Palmer M; Cummings M; Fulmer R; Vafaei S
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles.
    Apmann K; Fulmer R; Soto A; Vafaei S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.
    Lenin R; Joy PA
    J Colloid Interface Sci; 2017 Nov; 506():162-168. PubMed ID: 28735189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced thermal conductivity of nanofluids by introducing Janus particles.
    Cui X; Wang J; Xia G
    Nanoscale; 2021 Dec; 14(1):99-107. PubMed ID: 34897350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.
    Liu M; Lin MC; Wang C
    Nanoscale Res Lett; 2011 Apr; 6(1):297. PubMed ID: 21711787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of thermal characteristics of ZrO
    Barai RM; Kumar D; Wankhade AV; Sayed AR; Junankar AA
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25523-25531. PubMed ID: 35399131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Solvothermal Synthesis of TiO₂ Nanoparticles in a Non-Polar Medium to Prepare Highly Stable Nanofluids with Improved Thermal Properties.
    Aguilar T; Carrillo-Berdugo I; Gómez-Villarejo R; Gallardo JJ; Martínez-Merino P; Piñero JC; Alcántara R; Fernández-Lorenzo C; Navas J
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30309047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Oxidised Carbon Nanofibre-Based Nanofluids: Structural, Morphological, Stability and Thermal Properties.
    Mohd Saidi N; Abdullah N; Norizan MN; Janudin N; Mohd Kasim NA; Osman MJ; Mohamad IS; Mohd Rosli MA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids.
    Agromayor R; Cabaleiro D; Pardinas AA; Vallejo JP; Fernandez-Seara J; Lugo L
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid.
    Pal R
    Nanomaterials (Basel); 2014 Oct; 4(4):844-855. PubMed ID: 28344252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review.
    Louis SP; Ushak S; Milian Y; Nemś M; Nemś A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements.
    Guo SZ; Li Y; Jiang JS; Xie HQ
    Nanoscale Res Lett; 2010 May; 5(7):1222-7. PubMed ID: 20596461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, Stability and Thermal Characteristic of Al₂O₃/Bio-Oil Based Nanofluids for Heat Transfer Applications.
    Umar S; Sulaiman F; Abdullah N; Mohamad SN
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7569-7576. PubMed ID: 32711628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants.
    Karagiannakis NP; Skouras ED; Burganos VN
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33227926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.