These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36134291)
41. Graphene-Based Flexible and Transparent Tunable Capacitors. Man B; Xu S; Jiang S; Liu A; Gao S; Zhang C; Qiu H; Li Z Nanoscale Res Lett; 2015 Dec; 10(1):974. PubMed ID: 26138450 [TBL] [Abstract][Full Text] [Related]
42. Organic solar cells using CVD-grown graphene electrodes. Kim H; Bae SH; Han TH; Lim KG; Ahn JH; Lee TW Nanotechnology; 2014 Jan; 25(1):014012. PubMed ID: 24334624 [TBL] [Abstract][Full Text] [Related]
43. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. Tsai LW; Tai NH ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088 [TBL] [Abstract][Full Text] [Related]
44. Wetting-Induced Fabrication of Graphene Hybrid with Conducting Polymers for High-Performance Flexible Transparent Electrodes. Ma C; Liu H; Teng C; Li L; Zhu Y; Yang H; Jiang L ACS Appl Mater Interfaces; 2020 Dec; 12(49):55372-55381. PubMed ID: 33236880 [TBL] [Abstract][Full Text] [Related]
45. Ultra-smooth glassy graphene thin films for flexible transparent circuits. Dai X; Wu J; Qian Z; Wang H; Jian J; Cao Y; Rummeli MH; Yi Q; Liu H; Zou G Sci Adv; 2016 Nov; 2(11):e1601574. PubMed ID: 28138535 [TBL] [Abstract][Full Text] [Related]
46. Review of fabrication methods of large-area transparent graphene electrodes for industry. Mustonen P; Mackenzie DMA; Lipsanen H Front Optoelectron; 2020 Jun; 13(2):91-113. PubMed ID: 36641556 [TBL] [Abstract][Full Text] [Related]
47. Fabrication of graphene films with high transparent conducting characteristics. Ma X; Zhang H Nanoscale Res Lett; 2013 Oct; 8(1):440. PubMed ID: 24153052 [TBL] [Abstract][Full Text] [Related]
48. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Fisichella G; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Tudisco C; Condorelli GG; Piluso N; Spartà N; Lo Verso S; Accardi C; Tringali C; Ravesi S; Giannazzo F Beilstein J Nanotechnol; 2013; 4():234-42. PubMed ID: 23616943 [TBL] [Abstract][Full Text] [Related]
49. Selectively Patterned Regrowth of Bilayer Graphene for Self-Integrated Electronics by Sequential Chemical Vapor Deposition. Yi D; Jeon S; Hong SW ACS Appl Mater Interfaces; 2018 Nov; 10(46):40014-40023. PubMed ID: 30365886 [TBL] [Abstract][Full Text] [Related]
50. Enhancement of Characteristics of Transparent Conductive Electrode on Flexible Substrate by Combination of Solution-Based Oxide and Metallic Layers. Hong SJ; Kim YH; Cha SJ; Kim YS J Nanosci Nanotechnol; 2015 Oct; 15(10):7997-8003. PubMed ID: 26726453 [TBL] [Abstract][Full Text] [Related]
51. Highly uniform monolayer graphene synthesis Jeong H; Hwang WT; Song Y; Kim JK; Kim Y; Hihath J; Chung S; Lee T RSC Adv; 2019 Jul; 9(36):20871-20878. PubMed ID: 35515571 [TBL] [Abstract][Full Text] [Related]
52. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Lee D; Lee H; Ahn Y; Jeong Y; Lee DY; Lee Y Nanoscale; 2013 Sep; 5(17):7750-5. PubMed ID: 23842732 [TBL] [Abstract][Full Text] [Related]
53. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nguyen DD; Tai NH; Chen SY; Chueh YL Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118 [TBL] [Abstract][Full Text] [Related]
54. Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes. Souza VHR; Flahaut E; Zarbin AJG J Colloid Interface Sci; 2017 Sep; 502():146-152. PubMed ID: 28478221 [TBL] [Abstract][Full Text] [Related]
55. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Mafra DL; Ming T; Kong J Nanoscale; 2015 Sep; 7(36):14807-12. PubMed ID: 26289387 [TBL] [Abstract][Full Text] [Related]
56. Enhancing the conductivity of transparent graphene films via doping. Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167 [TBL] [Abstract][Full Text] [Related]
57. High Mobility Graphene on EVA/PET. Khan M; Indykiewicz K; Tam PL; Yurgens A Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159676 [TBL] [Abstract][Full Text] [Related]
58. Simple and Reliable Lift-Off Patterning Approach for Graphene and Graphene-Ag Nanowire Hybrid Films. Trung TN; Kim DO; Lee JH; Dao VD; Choi HS; Kim ET ACS Appl Mater Interfaces; 2017 Jun; 9(25):21406-21412. PubMed ID: 28573859 [TBL] [Abstract][Full Text] [Related]
59. Hierarchical graphene/metal grid structures for stable, flexible transparent conductors. Gao T; Li Z; Huang PS; Shenoy GJ; Parobek D; Tan S; Lee JK; Liu H; Leu PW ACS Nano; 2015 May; 9(5):5440-6. PubMed ID: 25923309 [TBL] [Abstract][Full Text] [Related]
60. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application. Lee BJ; Yu HY; Jeong GH Nanoscale Res Lett; 2010 Jul; 5(11):1768-1773. PubMed ID: 21124624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]