BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 36134292)

  • 1. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications.
    Palchoudhury S; Ramasamy K; Gupta A
    Nanoscale Adv; 2020 Aug; 2(8):3069-3082. PubMed ID: 36134292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar light harvesting with multinary metal chalcogenide nanocrystals.
    Stroyuk O; Raevskaya A; Gaponik N
    Chem Soc Rev; 2018 Jul; 47(14):5354-5422. PubMed ID: 29799031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects of Colloidal Copper Chalcogenide Nanocrystals.
    van der Stam W; Berends AC; de Mello Donega C
    Chemphyschem; 2016 Mar; 17(5):559-81. PubMed ID: 26684665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides for next-generation energy storage.
    Palchoudhury S; Ramasamy K; Han J; Chen P; Gupta A
    Nanoscale Adv; 2023 May; 5(10):2724-2742. PubMed ID: 37205287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials.
    Tan C; Lai Z; Zhang H
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28752578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional copper based colloidal nanocrystals: synthesis and applications.
    Kapuria N; Patil NN; Ryan KM; Singh S
    Nanoscale; 2022 Feb; 14(8):2885-2914. PubMed ID: 35156983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions.
    Kapuria N; Conroy M; Lebedev VA; Adegoke TE; Zhang Y; Amiinu IS; Bangert U; Cabot A; Singh S; Ryan KM
    ACS Nano; 2022 Jun; 16(6):8917-8927. PubMed ID: 35593407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.
    Fu H; Tsang SW
    Nanoscale; 2012 Apr; 4(7):2187-201. PubMed ID: 22382898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Chalcogenide Thin Films for Solar Energy Harvesting Devices.
    Hadke S; Huang M; Chen C; Tay YF; Chen S; Tang J; Wong L
    Chem Rev; 2022 Jun; 122(11):10170-10265. PubMed ID: 34878268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-source-dependent phase-selective preparation of Cu
    Bian Q; Liao H; Tang C; Li K; Wan J; Xiao Y; Cheng B; Lei S
    Dalton Trans; 2022 Aug; 51(30):11416-11426. PubMed ID: 35822345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on potential sulfide-based ternary chalcogenides for emerging photo-assisted water purification applications.
    Ravichandran J; Singh S
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):69751-69773. PubMed ID: 37156955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures.
    Bai X; Purcell-Milton F; Gun'ko YK
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30634642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline-Earth Chalcogenide Nanocrystals: Solution-Phase Synthesis, Surface Chemistry, and Stability.
    Roth AN; Chen Y; Adamson MAS; Gi E; Wagner M; Rossini AJ; Vela J
    ACS Nano; 2022 Aug; 16(8):12024-12035. PubMed ID: 35849721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Multinary Metal Chalcogenide Bi
    Zhang L; Liu J; Zhai Y; Zhang S; Wang W; Li G; Sun L; Li H; Qi S; Chen S; Wang R; Ma Q; Just J; Zhang C
    Adv Mater; 2024 Jun; 36(23):e2313835. PubMed ID: 38427844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells.
    Antunez PD; Buckley JJ; Brutchey RL
    Nanoscale; 2011 Jun; 3(6):2399-411. PubMed ID: 21465043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide Band Gap Chalcogenide Semiconductors.
    Woods-Robinson R; Han Y; Zhang H; Ablekim T; Khan I; Persson KA; Zakutayev A
    Chem Rev; 2020 May; 120(9):4007-4055. PubMed ID: 32250103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal Control of Branching in Metal Chalcogenide Semiconductor Nanostructures.
    Horani F; Sharma K; Abu-Hariri A; Lifshitz E
    J Phys Chem Lett; 2023 Apr; 14(16):3794-3804. PubMed ID: 37052606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.