These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36134309)
1. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309 [TBL] [Abstract][Full Text] [Related]
3. Surface plasmon coupling effects on the förster resonance energy transfer from quantum dot into rhodamine 6G. Chen CY; Ni CC; Wu RN; Kuo SY; Li CH; Kiang YW; Yang CC Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33848997 [TBL] [Abstract][Full Text] [Related]
4. Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices. Nguyen HT; Tran TT; Bhatt V; Kumar M; Yun JH J Phys Chem Lett; 2022 May; 13(19):4394-4401. PubMed ID: 35546522 [TBL] [Abstract][Full Text] [Related]
5. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992 [TBL] [Abstract][Full Text] [Related]
6. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots. Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635 [TBL] [Abstract][Full Text] [Related]
7. Excitation wavelength-dependent photoluminescence decay of single quantum dots near plasmonic gold nanoparticles. Sun Y; Wang Y; Zhu H; Jin N; Mohammad A; Biyikli N; Chen O; Chen K; Zhao J J Chem Phys; 2022 Apr; 156(15):154701. PubMed ID: 35459297 [TBL] [Abstract][Full Text] [Related]
8. Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL Nano Lett; 2011 Aug; 11(8):3341-5. PubMed ID: 21755927 [TBL] [Abstract][Full Text] [Related]
9. Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures. Zhao X; Wang P; Li B Nanoscale; 2011 Aug; 3(8):3056-9. PubMed ID: 21701747 [TBL] [Abstract][Full Text] [Related]
10. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Hu S; Ren Y; Wang Y; Li J; Qu J; Liu L; Ma H; Tang Y Beilstein J Nanotechnol; 2019; 10():22-31. PubMed ID: 30680276 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure. Chen YP; Ni CC; Wu RN; Kuo SY; Su YC; Huang YY; Chen JW; Hsu YC; Wu SH; Chen CY; Wu PH; Kiang YW; Yang CC Nanotechnology; 2021 Mar; 32(13):135206. PubMed ID: 33271517 [TBL] [Abstract][Full Text] [Related]
12. Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure. Lai YC; Yang S; Feng HY; Lee YC; Li ZH; Wu SH; Lin YS; Hsieh HY; Chu CJ; Chen WC; Huang YY; Kuo Y; Yang CC Opt Express; 2023 May; 31(10):16010-16024. PubMed ID: 37157689 [TBL] [Abstract][Full Text] [Related]
13. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Li X; Kao FJ; Chuang CC; He S Opt Express; 2010 May; 18(11):11335-46. PubMed ID: 20588995 [TBL] [Abstract][Full Text] [Related]
14. Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells. Wang YT; Wu RN; Ni CC; Lu CC; Cai CJ; Tse WF; Chang WY; Kuo Y; Kiang YW; Yang CC Opt Express; 2020 Apr; 28(9):13352-13367. PubMed ID: 32403812 [TBL] [Abstract][Full Text] [Related]
15. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
16. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
17. Correction: Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Nov; 3(23):6750. PubMed ID: 36136428 [TBL] [Abstract][Full Text] [Related]
18. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies. Khalid MA; Mubeen M; Mukhtar M; Siddique Z; Sumreen P; Aydın F; Asil D; Iqbal A J Fluoresc; 2023 Nov; 33(6):2523-2529. PubMed ID: 37314535 [TBL] [Abstract][Full Text] [Related]
19. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer. Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658 [TBL] [Abstract][Full Text] [Related]
20. Hybrid Porous Silicon Biosensors Using Plasmonic and Fluorescent Nanomaterials: A Mini Review. Abu-Thabit N; Ratemi E Front Chem; 2020; 8():454. PubMed ID: 32548094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]