These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36134395)

  • 21. Understanding the self-assembly of charged nanoparticles at the water/oil interface.
    Reincke F; Kegel WK; Zhang H; Nolte M; Wang D; Vanmaekelbergh D; Möhwald H
    Phys Chem Chem Phys; 2006 Sep; 8(33):3828-35. PubMed ID: 19817042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of non-spherical patchy particles at fluid-fluid interfaces via differential deformation and their self-assembly.
    Sabapathy M; Shelke Y; Basavaraj MG; Mani E
    Soft Matter; 2016 Jul; 12(27):5950-8. PubMed ID: 27320855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion.
    Meirelles AAD; Costa ALR; Cunha RL
    Int J Biol Macromol; 2020 Apr; 158():75-84. PubMed ID: 32344097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticle effects on the water-oil interfacial tension.
    Fan H; Striolo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051610. PubMed ID: 23214796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ellipsoidal Janus nanoparticles adsorbed at the water-oil interface: some evidence of emergent behavior.
    Luu XC; Yu J; Striolo A
    J Phys Chem B; 2013 Nov; 117(44):13922-9. PubMed ID: 24087908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals.
    Lombardo S; Eyley S; Schütz C; van Gorp H; Rosenfeldt S; Van den Mooter G; Thielemans W
    Langmuir; 2017 Jun; 33(22):5473-5481. PubMed ID: 28494586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charge-driven interfacial gelation of cellulose nanofibrils across the water/oil interface.
    Calabrese V; da Silva MA; Schmitt J; Hossain KMZ; Scott JL; Edler KJ
    Soft Matter; 2020 Jan; 16(2):357-365. PubMed ID: 31720672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the Physicochemical Properties of Cellulose Nanocrystals through an In Situ Oligosaccharide Surface Modification Method.
    Niinivaara E; Vanderfleet OM; Kontturi E; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3284-3296. PubMed ID: 34260208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of proteins to fluid interfaces: Role of the hydrophobic subphase.
    Bergfreund J; Bertsch P; Fischer P
    J Colloid Interface Sci; 2021 Feb; 584():411-417. PubMed ID: 33091866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Dynamics Simulation of β-Lactoglobulin at Different Oil/Water Interfaces.
    Zare D; Allison JR; McGrath KM
    Biomacromolecules; 2016 May; 17(5):1572-81. PubMed ID: 27075297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Oil Phase Transition on the Stability of Pickering Emulsions Stabilized by Cellulose Nanocrystals.
    Ataeian P; Nasseri R; Tong A; Tam KC
    Langmuir; 2022 Mar; 38(8):2737-2745. PubMed ID: 35171615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals.
    Varanasi S; Henzel L; Mendoza L; Prathapan R; Batchelor W; Tabor R; Garnier G
    Front Chem; 2018; 6():409. PubMed ID: 30283771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant Adsorption to Different Fluid Interfaces.
    Bergfreund J; Siegenthaler S; Lutz-Bueno V; Bertsch P; Fischer P
    Langmuir; 2021 Jun; 37(22):6722-6727. PubMed ID: 34030438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Starch nanocrystals as particle stabilisers of oil-in-water emulsions.
    Li C; Li Y; Sun P; Yang C
    J Sci Food Agric; 2014 Jul; 94(9):1802-7. PubMed ID: 24282158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous interface adsorption of colloidal particles.
    Kang DW; Lim JH; Park BJ
    Soft Matter; 2017 Sep; 13(36):6234-6242. PubMed ID: 28805212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle adsorption at the oil-water interface studied with second harmonic generation.
    Wu W; Liu X; Chen SL; Yuan Q; Gan W
    Soft Matter; 2019 Oct; 15(38):7672-7677. PubMed ID: 31490517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: influence of oil phase polarity.
    Thickett SC; Zetterlund PB
    J Colloid Interface Sci; 2015 Mar; 442():67-74. PubMed ID: 25521551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids.
    Zanini M; Isa L
    J Phys Condens Matter; 2016 Aug; 28(31):313002. PubMed ID: 27299800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.