BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36134412)

  • 1. Ultrahigh conductivity of graphene nanoribbons doped with ordered nitrogen.
    Li XF; Yan WW; Rao JR; Liu DX; Zhang XH; Cao X; Luo Y
    Nanoscale Adv; 2019 Nov; 1(11):4359-4364. PubMed ID: 36134412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires.
    Liu L; Li XF; Yan Q; Li QK; Zhang XH; Deng M; Qiu Q; Luo Y
    Phys Chem Chem Phys; 2016 Dec; 19(1):44-48. PubMed ID: 27918024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermi-Level Engineering of Nitrogen Core-Doped Armchair Graphene Nanoribbons.
    Wen ECH; Jacobse PH; Jiang J; Wang Z; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2023 Sep; 145(35):19338-19346. PubMed ID: 37611208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal doped armchair graphene nanoribbons: electronic structure, carrier mobility and device properties.
    Han JN; He X; Fan ZQ; Zhang ZH
    Phys Chem Chem Phys; 2019 Jan; 21(4):1830-1840. PubMed ID: 30629061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport.
    Rahmati E; Bafekry A; Faraji M; Gogva D; Nguyen CV; Ghergherehchi M
    RSC Adv; 2022 Feb; 12(10):6174-6180. PubMed ID: 35424535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous doping effects on charge transport in graphene nanoribbons.
    Biel B; Blase X; Triozon F; Roche S
    Phys Rev Lett; 2009 Mar; 102(9):096803. PubMed ID: 19392549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip Growth of Quasi-Metallic Bilayer Graphene Nanoribbons with Armchair Chirality.
    Lou S; Lyu B; Chen J; Zhou X; Jiang W; Qiu L; Shen P; Ma S; Zhang Z; Xie Y; Wu Z; Chen Y; Xu K; Liang Q; Watanabe K; Taniguchi T; Xian L; Zhang G; Ouyang W; Ding F; Shi Z
    Nano Lett; 2024 Jan; 24(1):156-164. PubMed ID: 38147652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons.
    Ivanov I; Hu Y; Osella S; Beser U; Wang HI; Beljonne D; Narita A; Müllen K; Turchinovich D; Bonn M
    J Am Chem Soc; 2017 Jun; 139(23):7982-7988. PubMed ID: 28525278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear indium atom chains at graphene edges.
    Elibol K; Susi T; Mangler C; Eder D; Meyer JC; Kotakoski J; Hobbs RG; van Aken PA; Bayer BC
    NPJ 2D Mater Appl; 2023; 7(1):2. PubMed ID: 38665487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C
    Cui P; Choi JH; Zeng C; Li Z; Yang J; Zhang Z
    J Am Chem Soc; 2017 May; 139(21):7196-7202. PubMed ID: 28497683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons.
    Hsu TC; Wu BX; Lin RT; Chien CJ; Yeh CY; Chang TH
    Sci Rep; 2023 Apr; 13(1):5781. PubMed ID: 37031224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures.
    Zdetsis AD; Economou EN
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(51):29463-29475. PubMed ID: 28127414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons.
    Zehtab Yazdi A; Chizari K; Jalilov AS; Tour J; Sundararaj U
    ACS Nano; 2015 Jun; 9(6):5833-45. PubMed ID: 26028162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.