These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36134928)

  • 1. Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed.
    Abas MFB; Singh B; Ahmad KA; Ng EYK; Khan T; Sebaey TA
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 36134928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW; Peacock WL; Dial KP
    J Exp Biol; 1999 Jul; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
    Tobalske B; Dial K
    J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic Performance of a Passive Pitching Model on Bionic Flapping Wing Micro Air Vehicles.
    Hao J; Wu J; Zhang Y
    Appl Bionics Biomech; 2019; 2019():1504310. PubMed ID: 31929826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus.
    Norberg UM
    J Exp Biol; 1976 Aug; 65(1):179-212. PubMed ID: 993701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic performance of flexible flapping wings deformed by slack angle.
    Addo-Akoto R; Han JS; Han JH
    Bioinspir Biomim; 2020 Oct; 15(6):. PubMed ID: 32702672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations.
    Suzuki K; Aoki T; Yoshino M
    Phys Rev E; 2019 Jul; 100(1-1):013104. PubMed ID: 31499861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.
    Li H; Guo S
    R Soc Open Sci; 2018 Mar; 5(3):171307. PubMed ID: 29657749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.