BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 36135281)

  • 1. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review.
    Nasution H; Harahap H; Dalimunthe NF; Ginting MHS; Jaafar M; Tan OOH; Aruan HK; Herfananda AL
    Gels; 2022 Sep; 8(9):. PubMed ID: 36135281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications.
    Aswathy SH; NarendraKumar U; Manjubala I
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of molecular weight of cellulose on the properties of carboxylic acid crosslinked cellulose hydrogels for biomedical and environmental applications.
    Aswathy SH; NarendraKumar U; Manjubala I
    Int J Biol Macromol; 2023 Jun; 239():124282. PubMed ID: 37023878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological insights on Carboxymethyl cellulose hydrogels.
    Enoch K; Somasundaram AA
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127481. PubMed ID: 37865366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural biopolymer-based hydrogels for use in food and agriculture.
    Klein M; Poverenov E
    J Sci Food Agric; 2020 Apr; 100(6):2337-2347. PubMed ID: 31960453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making Highly Elastic and Tough Hydrogels from Doughs.
    Nian G; Kim J; Bao X; Suo Z
    Adv Mater; 2022 Dec; 34(50):e2206577. PubMed ID: 36126085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review.
    Radoor S; Karayil J; Jayakumar A; Kandel DR; Kim JT; Siengchin S; Lee J
    Carbohydr Polym; 2024 Jan; 323():121339. PubMed ID: 37940239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose-based hydrogels for drug delivery.
    Ai Y; Lin Z; Zhao W; Cui M; Qi W; Huang R; Su R
    J Mater Chem B; 2023 Aug; 11(30):7004-7023. PubMed ID: 37313732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems.
    Gadziński P; Froelich A; Jadach B; Wojtyłko M; Tatarek A; Białek A; Krysztofiak J; Gackowski M; Otto F; Osmałek T
    Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.
    Yang Y; Liu X; Li Y; Wang Y; Bao C; Chen Y; Lin Q; Zhu L
    Acta Biomater; 2017 Oct; 62():199-209. PubMed ID: 28867650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology.
    Liu Q; Liu J; Qin S; Pei Y; Zheng X; Tang K
    Int J Biol Macromol; 2020 Dec; 164():1776-1784. PubMed ID: 32791281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact.
    Gao Y; Peng K; Mitragotri S
    Adv Mater; 2021 Jun; 33(25):e2006362. PubMed ID: 33988273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the Influence of Both the Average Molecular Weight and the Content of Crosslinking Agent on Physicochemical Properties of PVP-Based Hydrogels Developed as Innovative Dressings.
    Kędzierska M; Jamroży M; Drabczyk A; Kudłacik-Kramarczyk S; Bańkosz M; Gruca M; Potemski P; Tyliszczak B
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties.
    Münster L; Capáková Z; Fišera M; Kuřitka I; Vícha J
    Carbohydr Polym; 2019 Aug; 218():333-342. PubMed ID: 31221338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas.
    Esposito A; Sannino A; Cozzolino A; Quintiliano SN; Lamberti M; Ambrosio L; Nicolais L
    Biomaterials; 2005 Jul; 26(19):4101-10. PubMed ID: 15664637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Preparation of Carboxymethyl Cellulose-Phytic Acid Hydrogels with Potential for Biomedical Applications.
    Ghilan A; Nita LE; Pamfil D; Simionescu N; Tudorachi N; Rusu D; Rusu AG; Bercea M; Rosca I; Ciolacu DE; Chiriac AP
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A double-layer hydrogel based on alginate-carboxymethyl cellulose and synthetic polymer as sustained drug delivery system.
    Hu Y; Hu S; Zhang S; Dong S; Hu J; Kang L; Yang X
    Sci Rep; 2021 Apr; 11(1):9142. PubMed ID: 33911150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel: A Promising Material in Pharmaceutics.
    Waseeq Ur Rehman ; Asim M; Hussain S; Khan SA; Khan SB
    Curr Pharm Des; 2020; 26(45):5892-5908. PubMed ID: 33213319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel crosslinking methods to design hydrogels.
    Hennink WE; van Nostrum CF
    Adv Drug Deliv Rev; 2002 Jan; 54(1):13-36. PubMed ID: 11755704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.