These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36135302)
21. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Tripathi A; Kathuria N; Kumar A J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830 [TBL] [Abstract][Full Text] [Related]
22. Macroporous zwitterionic composite cryogel based on chitosan oligosaccharide for antifungal application. Dong P; Shu X; Peng R; Lu S; Xie X; Shi Q Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112327. PubMed ID: 34474878 [TBL] [Abstract][Full Text] [Related]
23. Cellulose nanocrystals-reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration. Jonidi Shariatzadeh F; Solouk A; Mirzadeh H; Bonakdar S; Sadeghi D; Khoulenjani SB J Biomed Mater Res B Appl Biomater; 2024 Feb; 112(2):e35346. PubMed ID: 38359175 [TBL] [Abstract][Full Text] [Related]
24. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Qi D; Wu S; Kuss MA; Shi W; Chung S; Deegan PT; Kamenskiy A; He Y; Duan B Acta Biomater; 2018 Jul; 74():131-142. PubMed ID: 29842971 [TBL] [Abstract][Full Text] [Related]
25. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Phadke A; Hwang Y; Kim SH; Kim SH; Yamaguchi T; Masuda K; Varghese S Eur Cell Mater; 2013 Jan; 25():114-129. PubMed ID: 23329467 [TBL] [Abstract][Full Text] [Related]
26. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold. Ghaderi Gandomani M; Sahebghadam Lotfi A; Kordi Tamandani D; Arjmand S; Alizadeh S Biochem Biophys Res Commun; 2017 Sep; 491(4):1000-1006. PubMed ID: 28778389 [TBL] [Abstract][Full Text] [Related]
27. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Ingavle GC; Baillie LW; Zheng Y; Lis EK; Savina IN; Howell CA; Mikhalovsky SV; Sandeman SR Biomaterials; 2015 May; 50():140-53. PubMed ID: 25736504 [TBL] [Abstract][Full Text] [Related]
29. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Chen CH; Kuo CY; Chen JP Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29373507 [TBL] [Abstract][Full Text] [Related]
30. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
31. Controlled pore anisotropy in chitosan-gelatin cryogels for use in bone tissue engineering. Andres M; Robertson E; Hall A; McBride-Gagyi S; Sell S J Biomater Appl; 2024 Feb; 38(7):797-807. PubMed ID: 38278524 [TBL] [Abstract][Full Text] [Related]
32. Impact of Composition and Autoclave Sterilization on the Mechanical and Biological Properties of ECM-Mimicking Cryogels. Di Muzio L; Zara S; Cataldi A; Sergi C; Carriero VC; Bigi B; Carradori S; Tirillò J; Petralito S; Casadei MA; Paolicelli P Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000793 [TBL] [Abstract][Full Text] [Related]
33. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform. Henderson TM; Ladewig K; Haylock DN; McLean KM; O'Connor AJ J Biomater Sci Polym Ed; 2015; 26(13):881-97. PubMed ID: 26123677 [TBL] [Abstract][Full Text] [Related]
34. A comprehensive review of cryogels and their roles in tissue engineering applications. Hixon KR; Lu T; Sell SA Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666 [TBL] [Abstract][Full Text] [Related]
35. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. Fan C; Ling Y; Deng W; Xue J; Sun P; Wang DA Biomed Mater; 2019 Jul; 14(5):055006. PubMed ID: 31269472 [TBL] [Abstract][Full Text] [Related]
36. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Jain E; Srivastava A; Kumar A J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161 [TBL] [Abstract][Full Text] [Related]
37. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Rana D; Colombani T; Saleh B; Mohammed HS; Annabi N; Bencherif SA Mater Today Bio; 2023 Apr; 19():100572. PubMed ID: 36880083 [TBL] [Abstract][Full Text] [Related]
38. Promoting hepatogenic differentiation of human mesenchymal stem cells using a novel laminin-containing gelatin cryogel scaffold. Mohammadpour A; Arjmand S; Lotfi AS; Tavana H; Kabir-Salmani M Biochem Biophys Res Commun; 2018 Dec; 507(1-4):15-21. PubMed ID: 30409421 [TBL] [Abstract][Full Text] [Related]
39. Three-dimensional cryogel matrix for spheroid formation and anti-cancer drug screening. Singh A; Tayalia P J Biomed Mater Res A; 2020 Feb; 108(2):365-376. PubMed ID: 31654478 [TBL] [Abstract][Full Text] [Related]
40. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy. Razavi M; Hu S; Thakor AS J Biomed Mater Res A; 2018 Aug; 106(8):2213-2228. PubMed ID: 29637738 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]