These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36135391)

  • 41. Structure-Aware Cross-Modal Transformer for Depth Completion.
    Zhao L; Wei Y; Li J; Zhou J; Lu J
    IEEE Trans Image Process; 2024; 33():1016-1031. PubMed ID: 38265893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks.
    Wang P; Yuan M; He Y; Sun J
    Int Ophthalmol; 2021 Jun; 41(6):2065-2072. PubMed ID: 33655390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Learning to map 2D ultrasound images into 3D space with minimal human annotation.
    Yeung PH; Aliasi M; Papageorghiou AT; Haak M; Xie W; Namburete AIL
    Med Image Anal; 2021 May; 70():101998. PubMed ID: 33711741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PaMIR: Parametric Model-Conditioned Implicit Representation for Image-Based Human Reconstruction.
    Zheng Z; Yu T; Liu Y; Dai Q
    IEEE Trans Pattern Anal Mach Intell; 2022 Jun; 44(6):3170-3184. PubMed ID: 33434121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph.
    Lu S; Li S; Wang Y; Zhang L; Hu Y; Li B
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35100576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks.
    Ge L; Liang H; Yuan J; Thalmann D
    IEEE Trans Pattern Anal Mach Intell; 2019 Apr; 41(4):956-970. PubMed ID: 29993927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface Reconstruction from Point Clouds: A Survey and a Benchmark.
    Huang Z; Wen Y; Wang Z; Ren J; Jia K
    IEEE Trans Pattern Anal Mach Intell; 2024 Jul; PP():. PubMed ID: 39012756
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sym3DNet: Symmetric 3D Prior Network for Single-View 3D Reconstruction.
    Siddique A; Lee S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network.
    Zhang L; Sun J; Zheng Q
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning -- promises for 3D nuclear imaging: a guide for biologists.
    Mougeot G; Dubos T; Chausse F; Péry E; Graumann K; Tatout C; Evans DE; Desset S
    J Cell Sci; 2022 Apr; 135(7):. PubMed ID: 35420128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beyond 3DMM: Learning to Capture High-Fidelity 3D Face Shape.
    Zhu X; Yu C; Huang D; Lei Z; Wang H; Li SZ
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):1442-1457. PubMed ID: 35363609
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A rotation and translation invariant method for 3D organ image classification using deep convolutional neural networks.
    Islam KT; Wijewickrema S; O'Leary S
    PeerJ Comput Sci; 2019; 5():e181. PubMed ID: 33816834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.
    Maiti A; Chakravarty D
    Springerplus; 2016; 5(1):932. PubMed ID: 27386376
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images.
    Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V
    Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Depth Image-Based Deep Learning of Grasp Planning for Textureless Planar-Faced Objects in Vision-Guided Robotic Bin-Picking.
    Jiang P; Ishihara Y; Sugiyama N; Oaki J; Tokura S; Sugahara A; Ogawa A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking from View Aggregation.
    Chen C; Zanotti Fragonara L; Tsourdos A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging.
    Stollmayer R; Budai BK; Tóth A; Kalina I; Hartmann E; Szoldán P; Bérczi V; Maurovich-Horvat P; Kaposi PN
    World J Gastroenterol; 2021 Sep; 27(35):5978-5988. PubMed ID: 34629814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.