BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36135557)

  • 1. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector,
    Torres TZB; Prince BC; Robison A; Rückert C
    Insects; 2022 Sep; 13(9):. PubMed ID: 36135557
    [No Abstract]   [Full Text] [Related]  

  • 2.
    Walsh E; Torres TZB; Rückert C
    Viruses; 2022 Dec; 14(12):. PubMed ID: 36560761
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes.
    Feng X; López Del Amo V; Mameli E; Lee M; Bishop AL; Perrimon N; Gantz VM
    Nat Commun; 2021 May; 12(1):2960. PubMed ID: 34017003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiviral RNAi Response in
    Altinli M; Leggewie M; Schulze J; Gyanwali R; Badusche M; Sreenu VB; Fuss J; Schnettler E
    Viruses; 2023 Feb; 15(2):. PubMed ID: 36851650
    [No Abstract]   [Full Text] [Related]  

  • 5. Embryo Microinjection Techniques for Efficient Site-Specific Mutagenesis in Culex quinquefasciatus.
    Bui M; Li M; Raban RR; Liu N; Akbari OS
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus Say.
    Purusothaman DK; Shackleford L; Anderson MAE; Harvey-Samuel T; Alphey L
    Sci Rep; 2021 Jul; 11(1):14964. PubMed ID: 34294769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection.
    Rückert C; Prasad AN; Garcia-Luna SM; Robison A; Grubaugh ND; Weger-Lucarelli J; Ebel GD
    Insect Biochem Mol Biol; 2019 Jun; 109():13-23. PubMed ID: 30959110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus.
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    Nat Commun; 2023 Nov; 14(1):7561. PubMed ID: 37985762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398284
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.
    Skalsky RL; Vanlandingham DL; Scholle F; Higgs S; Cullen BR
    BMC Genomics; 2010 Feb; 11():119. PubMed ID: 20167119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say.
    Anderson ME; Mavica J; Shackleford L; Flis I; Fochler S; Basu S; Alphey L
    PLoS One; 2019; 14(11):e0224857. PubMed ID: 31714905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats.
    Joyce AL; Melese E; Ha PT; Inman A
    Parasit Vectors; 2018 Jan; 11(1):10. PubMed ID: 29301567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.
    Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP
    J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.
    Dietrich I; Jansen S; Fall G; Lorenzen S; Rudolf M; Huber K; Heitmann A; Schicht S; Ndiaye EH; Watson M; Castelli I; Brennan B; Elliott RM; Diallo M; Sall AA; Failloux AB; Schnettler E; Kohl A; Becker SC
    mSphere; 2017; 2(3):. PubMed ID: 28497117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi-Mediated Screening of Selected Target Genes Against Culex quinquefasciatus (Diptera: Culicidae).
    Khalil SMS; Munawar K; Alahmed AM; Mohammed AMA
    J Med Entomol; 2021 Nov; 58(6):2177-2185. PubMed ID: 34197598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito
    Feng X; Kambic L; Nishimoto JHK; Reed FA; Denton JA; Sutton JT; Gantz VM
    CRISPR J; 2021 Aug; 4(4):595-608. PubMed ID: 34280034
    [No Abstract]   [Full Text] [Related]  

  • 17. Bloodmeal Host Selection of Culex quinquefasciatus (Diptera: Culicidae) in Las Vegas, Nevada, United States.
    Hannon ER; Jackson KC; Biggerstaff BJ; Raman V; Komar N
    J Med Entomol; 2019 Apr; 56(3):603-608. PubMed ID: 30668743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis.
    Samy AM; Elaagip AH; Kenawy MA; Ayres CF; Peterson AT; Soliman DE
    PLoS One; 2016; 11(10):e0163863. PubMed ID: 27695107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of long noncoding RNAs and their association with acquisition of blood meal in Culex quinquefasciatus.
    Azlan A; Halim MA; Mohamad F; Azzam G
    Insect Sci; 2021 Aug; 28(4):917-928. PubMed ID: 32621332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of
    Wang L; Rosales Rosas AL; De Coninck L; Shi C; Bouckaert J; Matthijnssens J; Delang L
    mSphere; 2021 Apr; 6(2):. PubMed ID: 33883261
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.