BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36135588)

  • 1. Bone Abrasive Machining: Influence of Tool Geometry and Cortical Bone Anisotropic Structure on Crack Propagation.
    Zawadzki P; Talar R
    J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Machining Parameters on Cutting and Chip-Formation Process during Cortical Bone Orthogonal Machining.
    Zawadzki P; Talar R; Patalas A; Legutko S
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Osteon Orientation on Surface Topography Parameters after Machining of Cortical Bone Tissue.
    Zawadzki P; Talar R; Grochalski K; DÄ…browski M
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specifications for machining the bovine cortical bone in relation to its microstructure.
    Sugita N; Mitsuishi M
    J Biomech; 2009 Dec; 42(16):2826-9. PubMed ID: 19775694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on ultrasonic bone cutting mechanism based on extended finite element method.
    Wang L; Liu Y; Wang S; Li J; Sun Y; Wang J; Zou Q
    Biomech Model Mechanobiol; 2024 Jun; 23(3):861-877. PubMed ID: 38261094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical investigation of cracking behavior of cortical bone in cutting.
    Alam K
    Technol Health Care; 2014; 22(5):741-50. PubMed ID: 25097063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal for a Novel Abrasive Machining Method for Preparing the Surface of Periarticular Tissue during Orthopedic Surgery on Hip Joints.
    Zawadzki P
    J Funct Biomater; 2021 Sep; 12(3):. PubMed ID: 34564199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of material removal in orthogonal cutting of cortical bone.
    Bai W; Shu L; Sun R; Xu J; Silberschmidt VV; Sugita N
    J Mech Behav Biomed Mater; 2020 Apr; 104():103618. PubMed ID: 31929098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements of material removal in cortical bone via impact cutting method.
    Bai W; Shu L; Sun R; Xu J; Silberschmidt VV; Sugita N
    J Mech Behav Biomed Mater; 2020 Aug; 108():103791. PubMed ID: 32469716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Analysis of the Effect of Abrasive/Tool Wear on the Ductile Machining of Fused Silica from the Perspective of Stress.
    Li M; Guo X; Yuan S; Zhao B; Qi Y; Zhang S; Guo D; Zhou P
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone.
    Shakouri E; Abbasi M
    Proc Inst Mech Eng H; 2018 Sep; 232(9):850-861. PubMed ID: 30052115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution Characteristics of Sub-Surface Cracks in Fused Quartz Ground with Different Worn Wheels.
    Zhao B; Wang Y; Yan Y; Wang K; Zhou P
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting.
    Shu L; Sugita N
    J Mech Behav Biomed Mater; 2020 Mar; 103():103599. PubMed ID: 32090928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.
    Schwieger K; Carrero V; Rentzsch R; Becker A; Bishop N; Hille E; Louis H; Morlock M; Honl M
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):223-8. PubMed ID: 15382033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The true toughness of human cortical bone measured with realistically short cracks.
    Koester KJ; Ager JW; Ritchie RO
    Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical Modeling and Experimental Study of Cutting Force for Cutting Hard and Brittle Materials in Fixed Abrasive Trepanning Drill.
    Yu R; Li S; Zou Z; Liang L
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture toughening mechanism of cortical bone: an experimental and numerical approach.
    An B; Liu Y; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):983-92. PubMed ID: 21783108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour.
    Li S; Abdel-Wahab A; Demirci E; Silberschmidt VV
    J Biomech; 2014 Mar; 47(5):1117-26. PubMed ID: 24440059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.