These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36135588)

  • 21. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
    Nairn JA
    Interface Focus; 2016 Jun; 6(3):20150110. PubMed ID: 27274800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process.
    Tahmasbi V; Safari M; Joudaki J
    Proc Inst Mech Eng H; 2020 Jan; 234(1):28-38. PubMed ID: 31617818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the Geometrical Features of the Cutting Edges of Abrasive Grains on the Removal Efficiency of the Ti6Al4V Titanium Alloy.
    Rypina Ł; Lipiński D; Banaszek K; Kacalak W; Szafraniec F
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element analysis on multi-toughening mechanism of microstructure of osteon.
    Yin D; Chen B; Lin S
    J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.
    Willett T; Josey D; Lu RXZ; Minhas G; Montesano J
    J Mech Behav Biomed Mater; 2017 Oct; 74():371-382. PubMed ID: 28675848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cutting Performance of Randomly Distributed Active Abrasive Grains in Gear Honing Process.
    Gao Y; Wang F; Liang Y; Han J; Su J; Tong Y; Liu L
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic prediction for cutting force in rotary ultrasonic machining of BK7 glass based on probability statistics.
    Lv D; Yan C; Chen G; Liu D; Wu X; Zhu Y
    Ultrasonics; 2020 Feb; 101():106006. PubMed ID: 31550623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of saw blade geometry on crack initiation and propagation on the lateral cortical hinge for HTO: Finite element analysis.
    Ehlinger M; Ollivier M; Course S; Guerin A; Lantz É; Zahraa D; Bonnomet F; Bahlouli N
    Orthop Traumatol Surg Res; 2019 Oct; 105(6):1079-1083. PubMed ID: 31447398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of orientation and age on the crack propagation in cortical bone.
    Rahman N; Ur Rahman W; Khan R
    Biomed Mater Eng; 2018; 29(5):601-610. PubMed ID: 30400074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abrasive Waterjet (AWJ) Forces-Potential Indicators of Machining Quality.
    Hlaváč LM; Annoni MPG; Hlaváčová IM; Arleo F; Viganò F; Štefek A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental study and sensitivity analysis of force behavior in cortical bone milling.
    Tahmasbi V; Qasemi M; Ghasemi R; Gholami R
    Med Eng Phys; 2022 Jul; 105():103821. PubMed ID: 35781391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.
    Li J; Meng W; Dong K; Zhang X; Zhao W
    Nanoscale Res Lett; 2018 Jan; 13(1):11. PubMed ID: 29327287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.
    Qiu Z; Liu C; Wang H; Yang X; Fang F; Tang J
    J Mech Behav Biomed Mater; 2016 Dec; 64():75-85. PubMed ID: 27479896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.