These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36135625)

  • 41. Fungal decomposition of Abies needle and Betula leaf litter.
    Osono T; Takeda H
    Mycologia; 2006; 98(2):172-9. PubMed ID: 16894962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants.
    Bonanomi G; Cesarano G; Lombardi N; Motti R; Scala F; Mazzoleni S; Incerti G
    Sci Rep; 2017 Aug; 7(1):9208. PubMed ID: 28835652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation.
    Suseela V; Tharayil N; Xing B; Dukes JS
    New Phytol; 2013 Oct; 200(1):122-133. PubMed ID: 23822593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interacting microbe and litter quality controls on litter decomposition: a modeling analysis.
    Moorhead D; Lashermes G; Recous S; Bertrand I
    PLoS One; 2014; 9(9):e108769. PubMed ID: 25264895
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils.
    Hall SJ; Silver WL; Timokhin VI; Hammel KE
    Glob Chang Biol; 2015 Jul; 21(7):2818-2828. PubMed ID: 25711691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.
    Zepp RG; Erickson DJ; Paul ND; Sulzberger B
    Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Litter Quality Modulates Effects of Dissolved Nitrogen on Leaf Decomposition by Stream Microbial Communities.
    Jabiol J; Lecerf A; Lamothe S; Gessner MO; Chauvet E
    Microb Ecol; 2019 May; 77(4):959-966. PubMed ID: 30899980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams.
    Pu G; Zeng D; Mo L; Liao J; Chen X; Qiu S; Lv Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110014. PubMed ID: 31810590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.
    Duboc O; Dignac MF; Djukic I; Zehetner F; Gerzabek MH; Rumpel C
    Glob Chang Biol; 2014 Jul; 20(7):2272-85. PubMed ID: 24323640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland.
    Pieristè M; Neimane S; Solanki T; Nybakken L; Jones AG; Forey E; Chauvat M; Ņečajeva J; Robson TM
    Plant Physiol Biochem; 2020 Jan; 146():42-54. PubMed ID: 31731113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screening of fungi for decomposition of lignin-derived products from Japanese cedar.
    Saito Y; Tsuchida H; Matsumoto T; Makita Y; Kawashima M; Kikuchi J; Matsui M
    J Biosci Bioeng; 2018 Nov; 126(5):573-579. PubMed ID: 29853299
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-term litter decomposition controlled by manganese redox cycling.
    Keiluweit M; Nico P; Harmon ME; Mao J; Pett-Ridge J; Kleber M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5253-60. PubMed ID: 26372954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis.
    Song X; Peng C; Jiang H; Zhu Q; Wang W
    PLoS One; 2013; 8(6):e68858. PubMed ID: 23818993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of exogenous nitrogen input and water change on litter decomposition in a desert grassland.
    Gao HY; Hong M; Huo LX; Ye H; Zhao BY; DE HS
    Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3167-3174. PubMed ID: 30325139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Field evidence for litter and self-DNA inhibitory effects on Alnus glutinosa roots.
    Bonanomi G; Zotti M; Idbella M; Termolino P; De Micco V; Mazzoleni S
    New Phytol; 2022 Oct; 236(2):399-412. PubMed ID: 35852010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disparate radiocesium leaching from two woody species by acceleration of litter decomposition using microbial inoculation.
    Hashida SN; Yoshihara T
    J Environ Radioact; 2016 Oct; 162-163():319-327. PubMed ID: 27323212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative Structure-Activity Relationship of Humic-Like Biostimulants Derived From Agro-Industrial Byproducts and Energy Crops.
    Savy D; Brostaux Y; Cozzolino V; Delaplace P; du Jardin P; Piccolo A
    Front Plant Sci; 2020; 11():581. PubMed ID: 32528492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy.
    Bonanomi G; Incerti G; Barile E; Capodilupo M; Antignani V; Mingo A; Lanzotti V; Scala F; Mazzoleni S
    New Phytol; 2011 Sep; 191(4):1018-1030. PubMed ID: 21574999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.