These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36135783)

  • 1. Less Is More: Hollow-Truss Microlattice Metamaterials with Dual Sound Dissipation Mechanisms and Enhanced Broadband Sound Absorption.
    Li X; Yu X; Zhai W
    Small; 2022 Nov; 18(44):e2204145. PubMed ID: 36135783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities.
    Li Z; Li X; Wang X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24868-24879. PubMed ID: 37086187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption, Damage Tolerance, and High Specific Strength.
    Li Z; Wang X; Li X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 Jan; ():. PubMed ID: 36655583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additively Manufactured Deformation-Recoverable and Broadband Sound-Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels.
    Li X; Yu X; Zhai W
    Adv Mater; 2021 Nov; 33(44):e2104552. PubMed ID: 34532911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound.
    Tang Y; Ren S; Meng H; Xin F; Huang L; Chen T; Zhang C; Lu TJ
    Sci Rep; 2017 Feb; 7():43340. PubMed ID: 28240239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials.
    Li X; Yu X; Chua JW; Zhai W
    Mater Horiz; 2023 Jul; 10(8):2892-2903. PubMed ID: 37183606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional sound-absorbing and mechanical metamaterials
    Li Z; Li X; Wang Z; Zhai W
    Mater Horiz; 2023 Jan; 10(1):75-87. PubMed ID: 36300521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound absorption by acoustic microlattice with optimized pore configuration.
    Cai X; Yang J; Hu G; Lu T
    J Acoust Soc Am; 2018 Aug; 144(2):EL138. PubMed ID: 30180656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior Strength, Toughness, and Damage-Tolerance Observed in Microlattices of Aperiodic Unit Cells.
    Wang X; Li X; Li Z; Wang Z; Zhai W
    Small; 2024 Jun; 20(23):e2307369. PubMed ID: 38183382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband sound absorption based on impedance decoupling and modulation mechanisms.
    Mei Z; Li X; Lyu Y; Sang J; Cheng X; Yang J
    J Acoust Soc Am; 2023 Nov; 154(5):3479-3486. PubMed ID: 38019095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity.
    Singh SK; Prakash O; Bhattacharya S
    Sci Rep; 2022 Nov; 12(1):20444. PubMed ID: 36443324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Analysis of a Hollow Metallic Microlattice Active Cooling System for Microsatellites.
    Chen J; Liu L; Xu W; Huang X; Sheng H
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moth wings are acoustic metamaterials.
    Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31134-31141. PubMed ID: 33229524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Lattice Structures for Sound Absorption: Current Progress, Mechanisms and Models, Structural-Property Relationships, and Future Outlook.
    Li X; Chua JW; Yu X; Li Z; Zhao M; Wang Z; Zhai W
    Adv Sci (Weinh); 2024 Jan; 11(4):e2305232. PubMed ID: 37997188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing of broadband sound absorption through soft matter.
    Ma F; Wang C; Du Y; Zhu Z; Wu JH
    Mater Horiz; 2022 Feb; 9(2):653-662. PubMed ID: 34787139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption.
    Pavan G; Singh S
    J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers.
    Ding J; Song K; Gong C; Wang C; Guo Y; Shi C; He F
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1287-1299. PubMed ID: 34583034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.