BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36135807)

  • 1. Vibrational Corrections to NMR Spin-Spin Coupling Constants from Relativistic Four-Component DFT Calculations.
    Jakubowska K; Pecul M; Ruud K
    J Phys Chem A; 2022 Oct; 126(39):7013-7020. PubMed ID: 36135807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic Four-Component DFT Calculations of Vibrational Frequencies.
    Jakubowska K; Pecul M; Ruud K
    J Phys Chem A; 2021 Dec; 125(48):10315-10320. PubMed ID: 34843253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections.
    Oprea CI; Rinkevicius Z; Vahtras O; Agren H; Ruud K
    J Chem Phys; 2005 Jul; 123(1):014101. PubMed ID: 16035827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.
    Wodyński A; Malkina OL; Pecul M
    J Phys Chem A; 2016 Jul; 120(28):5624-34. PubMed ID: 27177252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.
    Rusakova IL; Rusakov YY; Krivdin LB
    J Comput Chem; 2016 Jun; 37(15):1367-72. PubMed ID: 26931355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of relativistic effects on nuclear magnetic resonance spin-spin coupling constant polarizabilities of H
    Pagola GI; Larsen MAB; Ferraro M; Sauer SPA
    J Comput Chem; 2018 Dec; 39(31):2589-2600. PubMed ID: 30485474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):214-21. PubMed ID: 24549877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated ab initio calculations of one-bond
    Rusakova IL; Rusakov YY
    Magn Reson Chem; 2020 Oct; 58(10):929-940. PubMed ID: 32453871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic effects in the one-bond spin-spin coupling constants involving selenium.
    Rusakova IL; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Sep; 52(9):500-10. PubMed ID: 25043341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-bond 29Si-1H spin-spin coupling constants in the series of halosilanes: benchmark SOPPA and DFT calculations, relativistic effects, and vibrational corrections.
    Rusakov YY; Krivdin LB
    Magn Reson Chem; 2013 Sep; 51(9):557-61. PubMed ID: 23836682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.
    Ruud K; Demissie TB; Jaszuński M
    J Chem Phys; 2014 May; 140(19):194308. PubMed ID: 24852539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR Spin-Spin Coupling Constants Derived from Relativistic Four-Component DFT Theory-Analysis and Visualization.
    Komorovsky S; Jakubowska K; Świder P; Repisky M; Jaszuński M
    J Phys Chem A; 2020 Jun; 124(25):5157-5169. PubMed ID: 32460489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of NMR shieldings in XSe and XTe (X = Si, Ge, Sn and Pb): the spin-rotation constant saga.
    Demissie TB
    Phys Chem Chem Phys; 2016 Jan; 18(4):3112-23. PubMed ID: 26741559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalar and Spin-Orbit Relativistic Corrections to the NICS and the Induced Magnetic Field: The case of the E12(2-) Spherenes (E = Ge, Sn, Pb).
    Castro AC; Osorio E; Jiménez-Halla JO; Matito E; Tiznado W; Merino G
    J Chem Theory Comput; 2010 Sep; 6(9):2701-5. PubMed ID: 26616070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.