These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36136039)

  • 1. The Account of the Effect of Switch Probability on Switch and Mixing Costs: An ERP Study in a Cued Task-switching Paradigm.
    Wenwen C; Yang Y; Cui L; Chen Y; Zhang W; Zhang X; Zhou S
    Cogn Behav Neurol; 2022 Dec; 35(4):230-246. PubMed ID: 36136039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation.
    López Zunini RA; Morrison C; Kousaie S; Taler V
    Neuropsychologia; 2019 Oct; 133():107186. PubMed ID: 31513809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-switching costs have distinct phase-locked and nonphase-locked EEG power effects.
    McKewen M; Cooper PS; Wong ASW; Michie PT; Sauseng P; Karayanidis F
    Psychophysiology; 2020 May; 57(5):e13533. PubMed ID: 31994736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new account of the effect of probability on task switching: ERP evidence following the manipulation of switch probability, cue informativeness and predictability.
    Nessler D; Friedman D; Johnson R
    Biol Psychol; 2012 Oct; 91(2):245-62. PubMed ID: 22820040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct neurophysiological mechanisms mediate mixing costs and switch costs.
    Wylie GR; Murray MM; Javitt DC; Foxe JJ
    J Cogn Neurosci; 2009 Jan; 21(1):105-18. PubMed ID: 18476759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of anticipatory cognitive control processes in task-switching: an ERP study in children, adolescents, and young adults.
    Manzi A; Nessler D; Czernochowski D; Friedman D
    Psychophysiology; 2011 Sep; 48(9):1258-75. PubMed ID: 21371043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch-specific and general preparation map onto different ERP components in a task-switching paradigm.
    Karayanidis F; Provost A; Brown S; Paton B; Heathcote A
    Psychophysiology; 2011 Apr; 48(4):559-68. PubMed ID: 20718932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfiguration of response-set in task switching: Event-related potential evidence.
    Xie L; Cao B; Chen Y; Wu J; Li F
    Eur J Neurosci; 2023 Mar; 57(5):796-808. PubMed ID: 36601787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of response-effector switching using event-related potentials.
    Hsieh S; Wu M; Lin F
    Biol Psychol; 2014 Dec; 103():332-48. PubMed ID: 25448134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jointly modeling behavioral and EEG measures of proactive control in task switching.
    Karayanidis F; Hawkins GE; Wong ASW; Aziz F; Hunter M; Steyvers M
    Psychophysiology; 2023 Jul; 60(7):e14241. PubMed ID: 36633198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is task switching nothing but cue priming? Evidence from ERPs.
    Jost K; Mayr U; Rösler F
    Cogn Affect Behav Neurosci; 2008 Mar; 8(1):74-84. PubMed ID: 18405048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intertrial RT variability affects level of target-related interference in cued task switching.
    Provost A; Jamadar S; Heathcote A; Brown SD; Karayanidis F
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28776698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological correlates of residual switch costs.
    Gajewski PD; Kleinsorge T; Falkenstein M
    Cortex; 2010 Oct; 46(9):1138-48. PubMed ID: 19717147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the global/local probability effect on the neural processing of cues and targets. A functional systems approach.
    Arjona A; Rodríguez E; Morales M; Gómez CM
    Int J Psychophysiol; 2018 Dec; 134():52-61. PubMed ID: 30342061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioural and electrophysiological measures of task switching during single and mixed-task conditions.
    Goffaux P; Phillips NA; Sinai M; Pushkar D
    Biol Psychol; 2006 Jun; 72(3):278-90. PubMed ID: 16413655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related processing strategies and go-nogo effects in task-switching: an ERP study.
    Gaál ZA; Czigler I
    Front Hum Neurosci; 2015; 9():177. PubMed ID: 26029072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable theta networks underlie the switch and mixing costs during task switching.
    McKewen M; Cooper PS; Skippen P; Wong ASW; Michie PT; Karayanidis F
    Hum Brain Mapp; 2021 Oct; 42(14):4643-4657. PubMed ID: 34184803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain oscillatory activity associated with switch and mixing costs during reactive control.
    Capizzi M; Ambrosini E; Arbula S; Vallesi A
    Psychophysiology; 2020 Nov; 57(11):e13642. PubMed ID: 32720385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.