These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 36136428)
1. Correction: Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Nov; 3(23):6750. PubMed ID: 36136428 [TBL] [Abstract][Full Text] [Related]
2. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309 [TBL] [Abstract][Full Text] [Related]
4. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer. Kim S; Kim S; Ko YC; Sohn H J Nanosci Nanotechnol; 2015 Jul; 15(7):5057-61. PubMed ID: 26373077 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Muñoz-Rosas AL; Rodríguez-Gómez A; Alonso-Huitrón JC Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29565267 [TBL] [Abstract][Full Text] [Related]
6. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission. Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574 [TBL] [Abstract][Full Text] [Related]
7. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods. Lee SA; Ostovar B; Landes CF; Link S J Chem Phys; 2022 Feb; 156(6):064702. PubMed ID: 35168347 [TBL] [Abstract][Full Text] [Related]
10. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. Ostovar B; Cai YY; Tauzin LJ; Lee SA; Ahmadivand A; Zhang R; Nordlander P; Link S ACS Nano; 2020 Nov; 14(11):15757-15765. PubMed ID: 32852941 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Hu S; Ren Y; Wang Y; Li J; Qu J; Liu L; Ma H; Tang Y Beilstein J Nanotechnol; 2019; 10():22-31. PubMed ID: 30680276 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods. Zhang W; Caldarola M; Lu X; Orrit M ACS Photonics; 2018 Jul; 5(7):2960-2968. PubMed ID: 30057930 [TBL] [Abstract][Full Text] [Related]
13. Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. Cai YY; Liu JG; Tauzin LJ; Huang D; Sung E; Zhang H; Joplin A; Chang WS; Nordlander P; Link S ACS Nano; 2018 Feb; 12(2):976-985. PubMed ID: 29283248 [TBL] [Abstract][Full Text] [Related]
14. Interaction of ZnO nanorods with plasmonic metal nanoparticles and semiconductor quantum dots. Prajapati KN; Johns B; Bandopadhyay K; Silva SRP; Mitra J J Chem Phys; 2020 Feb; 152(6):064704. PubMed ID: 32061232 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of Biexciton Emission Due to Long-Range Interaction of Single Quantum Dots and Gold Nanorods in a Thin-Film Hybrid Nanostructure. Krivenkov V; Goncharov S; Samokhvalov P; Sánchez-Iglesias A; Grzelczak M; Nabiev I; Rakovich Y J Phys Chem Lett; 2019 Feb; 10(3):481-486. PubMed ID: 30616347 [TBL] [Abstract][Full Text] [Related]
16. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure. Warrier AR; Gandhimathi R Methods Appl Fluoresc; 2018 Apr; 6(3):035009. PubMed ID: 29633725 [TBL] [Abstract][Full Text] [Related]
17. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
18. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755 [TBL] [Abstract][Full Text] [Related]
19. Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. Higgins LJ; Karanikolas VD; Marocico CA; Bell AP; Sadler TC; Parbrook PJ; Bradley AL Opt Express; 2015 Jan; 23(2):1377-87. PubMed ID: 25835896 [TBL] [Abstract][Full Text] [Related]
20. Surface plasmon effects on two photon luminescence of gold nanorods. Wang DS; Hsu FY; Lin CW Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]