These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36136505)

  • 1. Study on Tritium and Iodine Species Transport through Porous Granite: A Non-Sorption Effect by Anion Exclusion.
    Shi Y; Yang S; Chen W; Xiong W; Zhang A; Yu Z; Lian B; Lee CP
    Toxics; 2022 Sep; 10(9):. PubMed ID: 36136505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite.
    Li MH; Wang TH; Teng SP
    J Hazard Mater; 2009 Feb; 162(1):530-5. PubMed ID: 18579288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences and implications of strontium distribution coefficient on various granite compositional materials.
    Cai F; Zhang X; Ma F; Qi L; Lu D; Dai Z
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39012533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of
    Štamberg K; Palágyi Š; Videnská K; Havlová V
    J Radioanal Nucl Chem; 2014; 299(3):1625-1633. PubMed ID: 26224965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport behaviors of Cs
    Wang W; Ding Z; Wang Y; Geng R; Zhang W; Wang J; Liang J; Li P; Fan Q
    Chemosphere; 2021 Apr; 268():129341. PubMed ID: 33359998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis.
    Huo L; Qian T; Hao J; Zhao D
    J Environ Radioact; 2013 Feb; 116():19-27. PubMed ID: 23085342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plutonium reactive transport in fractured granite: Multi-species experiments and simulations.
    Zhang X; Wang Z; Reimus P; Ma F; Soltanian MR; Xing B; Zang J; Wang Y; Dai Z
    Water Res; 2022 Oct; 224():119068. PubMed ID: 36103780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling radioiodine transport across a capillary fringe.
    Mathias SA; Butler AP; Wheater HS
    J Environ Radioact; 2008 Apr; 99(4):716-29. PubMed ID: 18022295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Numerical Study of Radioiodine Sorption and Transport in Hanford Sediments.
    He X; Rockhold ML; Fang Y; Lawter AR; Freedman VL; Mackley RD; Qafoku NP
    ACS Earth Space Chem; 2024 Feb; 8(2):323-334. PubMed ID: 38379836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Not Available].
    McCarter CPR; Rezanezhad F; Gharedaghloo B; Price JS; Van Cappellen P
    J Contam Hydrol; 2019 Aug; 225():103497. PubMed ID: 31102982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite.
    Cheng HP; Li MH; Li S
    J Contam Hydrol; 2003 Mar; 61(1-4):371-85. PubMed ID: 12598118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH
    J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface transport potential of perfluoroalkyl acids (PFAAs): Column experiments and modeling.
    Guelfo JL; Wunsch A; McCray J; Stults JF; Higgins CP
    J Contam Hydrol; 2020 Aug; 233():103661. PubMed ID: 32535327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating non-equilibrium solute transport in small soil columns.
    Kamra SK; Lennartz B; Van Genuchten MT; Widmoser P
    J Contam Hydrol; 2001 Apr; 48(3-4):189-212. PubMed ID: 11285931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved Speciation Method Combining IC with ICPOES and Its Application to Iodide and Iodate Diffusion Behavior in Compacted Bentonite Clay.
    Lee CP; Hu Y; Chen D; Wu E; Wang Z; Wen Z; Tien NC; Yang F; Tsai SC; Shi Y; Liu YL
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure Behavior of Granite Affected by Confinement and Water Pressure and Its Influence on the Seepage Behavior by Laboratory Experiments.
    Cheng C; Li X; Li S; Zheng B
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns.
    Bi E; Zhang L; Schmidt TC; Haderlein SB
    J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and competitive effects of sorption on multi-element migration through crushed granite and biotite gneiss in Ca-HCO
    Eun H; Lee S; Lee J; Jeong MS; Iqbal S; Yun JI
    J Environ Radioact; 2024 Jul; 278():107501. PubMed ID: 39032341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.