These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36137233)

  • 1. Nonadiabatic Reactive Quenching of OH(
    Han S; Zhao B; Conte R; Malbon CL; Bowman JM; Yarkony DR; Guo H
    J Phys Chem A; 2022 Oct; 126(39):6944-6952. PubMed ID: 36137233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(A
    Han S; de Oliveira-Filho AGS; Shu Y; Truhlar DG; Guo H
    Chemphyschem; 2022 Apr; 23(8):e202200039. PubMed ID: 35179813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic quenching of OH A 2Σ+ induced by collisions with Kr atoms.
    Lehman JH; Lester MI; Kłos J; Alexander MH; Dagdigian PJ; Herráez-Aguilar D; Aoiz FJ; Brouard M; Chadwick H; Perkins T; Seamons SA
    J Phys Chem A; 2013 Dec; 117(50):13481-90. PubMed ID: 23964894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenching of OH(A(2)Sigma(+)) by H(2) through conical intersections: highly excited products in nonreactive channel.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Phys Chem A; 2010 Jun; 114(24):6565-8. PubMed ID: 20499943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited
    Shu Y; Kryven J; Sampaio de Oliveira-Filho AG; Zhang L; Song GL; Li SL; Meana-Pañeda R; Fu B; Bowman JM; Truhlar DG
    J Chem Phys; 2019 Sep; 151(10):104311. PubMed ID: 31521070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive quenching of OH A 2Σ+ by O2 and CO: experimental and nonadiabatic theoretical studies of H- and O-atom product channels.
    Lehman JH; Lester MI; Yarkony DR
    J Chem Phys; 2012 Sep; 137(9):094312. PubMed ID: 22957574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism for the nonadiabatic reactive quenching of OH(A2Σ+) by H2(1Σg+): the role of the 2(2)A state.
    Dillon J; Yarkony DR
    J Chem Phys; 2013 Aug; 139(6):064314. PubMed ID: 23947862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the nonadiabatic collisional quenching of OH(A) by H
    Malbon CL; Zhao B; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13516-13527. PubMed ID: 32538422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic Renner-Teller quantum dynamics of OH(X
    Gamallo P; Akpinar S; Defazio P; Petrongolo C
    Phys Chem Chem Phys; 2017 Feb; 19(6):4454-4461. PubMed ID: 28120967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonadiabatic quantum reactive scattering of the OH(A  2Σ+) + D2.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Chem Phys; 2010 Nov; 133(17):174316. PubMed ID: 21054041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conical-intersection quantum dynamics of OH(A2Σ+) + H(2S) collisions.
    Gamallo P; Akpinar S; Defazio P; Petrongolo C
    J Chem Phys; 2013 Sep; 139(9):094303. PubMed ID: 24028113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Final state-resolved mode specificity in HX + OH → X + H2O (X = F and Cl) reactions: a quasi-classical trajectory study.
    Li J; Corchado JC; Espinosa-Garcia J; Guo H
    J Chem Phys; 2015 Feb; 142(8):084314. PubMed ID: 25725738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasiclassical trajectory study of the postquenching dynamics of OH A 2Σ+ by H2/D2 on a global potential energy surface.
    Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2010 Oct; 133(16):164306. PubMed ID: 21033787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH
    Wang Y; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic quenching of OH A 2Sigma+ radicals in single collision events with H2 and D2: a comprehensive quantum state distribution of the OH X 2Pi products.
    Dempsey LP; Murray C; Cleary PA; Lester MI
    Phys Chem Chem Phys; 2008 Mar; 10(10):1424-32. PubMed ID: 18309399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Gaussian Binning (1GB) analysis of vibrational state distributions in highly excited H2O from reactive quenching of OH∗ by H2.
    Conte R; Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2013 Jul; 139(4):044104. PubMed ID: 23901957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisional quenching of OD A 2Σ+ by H2: experimental and theoretical studies of the state-resolved OD X 2Π product distribution and branching fraction.
    Lehman JH; Dempsey LP; Lester MI; Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2010 Oct; 133(16):164307. PubMed ID: 21033788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-resolved distribution of OH X 2Pi products arising from electronic quenching of OH A 2Sigma+ by N2.
    Dempsey LP; Sechler TD; Murray C; Lester MI; Matsika S
    J Chem Phys; 2009 Mar; 130(10):104307. PubMed ID: 19292534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ab initio quasi-diabatic potential energy matrix for OH(2Σ) + H2.
    Collins MA; Godsi O; Liu S; Zhang DH
    J Chem Phys; 2011 Dec; 135(23):234307. PubMed ID: 22191875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.