These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36137320)
1. Efficient two-step liver and tumour segmentation on abdominal CT via deep learning and a conditional random field. Chen Y; Zheng C; Hu F; Zhou T; Feng L; Xu G; Yi Z; Zhang X Comput Biol Med; 2022 Nov; 150():106076. PubMed ID: 36137320 [TBL] [Abstract][Full Text] [Related]
2. A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans. Chen Y; Zheng C; Zhou T; Feng L; Liu L; Zeng Q; Wang G Comput Biol Med; 2023 Jan; 152():106421. PubMed ID: 36527780 [TBL] [Abstract][Full Text] [Related]
3. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
4. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images. Zhang B; Qi S; Wu Y; Pan X; Yao Y; Qian W; Guan Y Comput Methods Programs Biomed; 2022 Jul; 222():106946. PubMed ID: 35716533 [TBL] [Abstract][Full Text] [Related]
5. Deep learning and level set approach for liver and tumor segmentation from CT scans. Alirr OI J Appl Clin Med Phys; 2020 Oct; 21(10):200-209. PubMed ID: 33113290 [TBL] [Abstract][Full Text] [Related]
6. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
7. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. Seo H; Huang C; Bassenne M; Xiao R; Xing L IEEE Trans Med Imaging; 2020 May; 39(5):1316-1325. PubMed ID: 31634827 [TBL] [Abstract][Full Text] [Related]
8. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
9. Hepatic and portal vein segmentation with dual-stream deep neural network. Xu J; Jiang W; Wu J; Zhang W; Zhu Z; Xin J; Zheng N; Wang B Med Phys; 2024 Aug; 51(8):5441-5456. PubMed ID: 38648676 [TBL] [Abstract][Full Text] [Related]
10. Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+. Li J; Liu K; Hu Y; Zhang H; Heidari AA; Chen H; Zhang W; Algarni AD; Elmannai H Comput Biol Med; 2023 May; 158():106501. PubMed ID: 36635120 [TBL] [Abstract][Full Text] [Related]
11. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images. Liu T; Liu J; Ma Y; He J; Han J; Ding X; Chen CT Med Phys; 2021 Jan; 48(1):264-272. PubMed ID: 33159809 [TBL] [Abstract][Full Text] [Related]
12. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field. Chen H; Liu J; Lu L; Wang T; Xu X; Chu A; Peng W; Gong J; Tang W; Gu Y Med Phys; 2022 Feb; 49(2):1097-1107. PubMed ID: 34951492 [TBL] [Abstract][Full Text] [Related]
13. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [TBL] [Abstract][Full Text] [Related]
14. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Budak Ü; Guo Y; Tanyildizi E; Şengür A Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758 [TBL] [Abstract][Full Text] [Related]
15. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision. Yang S; Liang Y; Wu S; Sun P; Chen Z J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134 [TBL] [Abstract][Full Text] [Related]
16. An automated liver tumour segmentation from abdominal CT scans for hepatic surgical planning. Alirr OI; Rahni AAA; Golkar E Int J Comput Assist Radiol Surg; 2018 Aug; 13(8):1169-1176. PubMed ID: 29860549 [TBL] [Abstract][Full Text] [Related]
17. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT. Wang J; Zhang X; Guo L; Shi C; Tamura S Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812 [TBL] [Abstract][Full Text] [Related]
18. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
19. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour. Jin R; Wang M; Xu L; Lu J; Song E; Ma G Med Phys; 2023 Apr; 50(4):2100-2120. PubMed ID: 36413182 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation. Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]