BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36137544)

  • 1. An effective edge conductivity for reducing staircasing error in induced electric field computation for low-frequency magnetic field dosimetry.
    Diao Y; Zhang L; Shi D; Hirata A
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36137544
    [No Abstract]   [Full Text] [Related]  

  • 2. Tensor-conductance model for reducing the computational artifact in target tissue for low-frequency dosimetry.
    Diao Y; Liu L; Deng N; Lyu S; Hirata A
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37722382
    [No Abstract]   [Full Text] [Related]  

  • 3. Reducing the staircasing error in computational dosimetry of low-frequency electromagnetic fields.
    Laakso I; Hirata A
    Phys Med Biol; 2012 Feb; 57(4):N25-34. PubMed ID: 22290579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational errors of the induced electric field in voxelized and tetrahedral anatomical head models exposed to spatially uniform and localized magnetic fields.
    Soldati M; Laakso I
    Phys Med Biol; 2020 Jan; 65(1):015001. PubMed ID: 31791030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of human brain exposure to low-frequency magnetic fields: a numerical assessment of spatially averaged electric fields and exposure limits.
    Chen XL; Benkler S; Chavannes N; De Santis V; Bakker J; van Rhoon G; Mosig J; Kuster N
    Bioelectromagnetics; 2013 Jul; 34(5):375-84. PubMed ID: 23404214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes.
    Hirata A; Takano Y; Fujiwara O; Dovan T; Kavet R
    Phys Med Biol; 2011 Jul; 56(13):4091-101. PubMed ID: 21693787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-individual variations in electric fields induced in the brain by exposure to uniform magnetic fields at 50 Hz.
    Soldati M; Murakami T; Laakso I
    Phys Med Biol; 2020 Oct; 65(21):215006. PubMed ID: 32615544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field induced in the human body by uniform 50 Hz electric or magnetic fields: bibliography analysis and method for conservatively deriving measurable limits.
    Magne I; Deschamps F
    J Radiol Prot; 2016 Sep; 36(3):419-436. PubMed ID: 27340133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz).
    Bodewein L; Schmiedchen K; Dechent D; Stunder D; Graefrath D; Winter L; Kraus T; Driessen S
    Environ Res; 2019 Apr; 171():247-259. PubMed ID: 30690271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational dosimetry for grounded and ungrounded human models due to contact current.
    Chan KH; Hattori J; Laakso I; Hirata A; Taki M
    Phys Med Biol; 2013 Aug; 58(15):5153-72. PubMed ID: 23835790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz.
    Dimbylow P
    Phys Med Biol; 2006 May; 51(10):2383-94. PubMed ID: 16675859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the safety assessment and protection design of human exposure to low-frequency magnetic fields in electric vehicles.
    Tan L; Li G; Xie Q; Xiang Y; Luo B
    Radiat Prot Dosimetry; 2023 Dec; 200(1):60-74. PubMed ID: 37819666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-laboratory comparison of numerical dosimetry for human exposure to 60 Hz electric and magnetic fields.
    Stuchly MA; Gandhi OP
    Bioelectromagnetics; 2000 Apr; 21(3):167-74. PubMed ID: 10723016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coverage factors for efficient demonstration of compliance of low-frequency magnetic near-field exposures with basic restrictions.
    Xi J; Christ A; Kuster N
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36595233
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of tissue conductivity on foetal exposure to extremely low frequency magnetic fields at 50 Hz using stochastic dosimetry.
    Fiocchi S; Chiaramello E; Parazzini M; Ravazzani P
    PLoS One; 2018; 13(2):e0192131. PubMed ID: 29415005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic numerical assessment of occupational exposure to electromagnetic fields of transcranial magnetic stimulation.
    D'Agostino S; Colella M; Liberti M; Falsaperla R; Apollonio F
    Med Phys; 2022 May; 49(5):3416-3431. PubMed ID: 35196394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magneto- and electrophosphene thresholds in the retina: a dosimetry modeling study.
    Nissi J; Laakso I
    Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34965521
    [No Abstract]   [Full Text] [Related]  

  • 19. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields.
    Bakker JF; Paulides MM; Neufeld E; Christ A; Chen XL; Kuster N; van Rhoon GC
    Phys Med Biol; 2012 Apr; 57(7):1815-29. PubMed ID: 22411059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetry considerations in the head and retina for extremely low frequency electric fields.
    Taki M; Suzuki Y; Wake K
    Radiat Prot Dosimetry; 2003; 106(4):349-56. PubMed ID: 14690278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.