These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36138042)
1. Injectable nanoporous microgels generate vascularized constructs and support bone regeneration in critical-sized defects. Patrick MD; Keys JF; Suresh Kumar H; Annamalai RT Sci Rep; 2022 Sep; 12(1):15811. PubMed ID: 36138042 [TBL] [Abstract][Full Text] [Related]
2. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues. Schott NG; Friend NE; Stegemann JP Tissue Eng Part B Rev; 2021 Jun; 27(3):199-214. PubMed ID: 32854589 [TBL] [Abstract][Full Text] [Related]
3. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Kang Y; Xu J; Meng L; Su Y; Fang H; Liu J; Cheng YY; Jiang D; Nie Y; Song K Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36756934 [TBL] [Abstract][Full Text] [Related]
4. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Zhao Q; Li G; Wang T; Jin Y; Lu W; Ji J Stem Cells Dev; 2021 May; 30(10):548-559. PubMed ID: 33736461 [TBL] [Abstract][Full Text] [Related]
5. Coculture of Endothelial and Stromal Cells to Promote Concurrent Osteogenesis and Vasculogenesis. Schott NG; Stegemann JP Tissue Eng Part A; 2021 Nov; 27(21-22):1376-1386. PubMed ID: 33599160 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Chen X; Bai S; Li B; Liu H; Wu G; Liu S; Zhao Y Int J Nanomedicine; 2016; 11():4707-4718. PubMed ID: 27695327 [TBL] [Abstract][Full Text] [Related]
9. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
10. Oxygen Tension-Controlled Matrices with Osteogenic and Vasculogenic Cells for Vascularized Bone Regeneration In Vivo. Amini AR; Xu TO; Chidambaram RM; Nukavarapu SP Tissue Eng Part A; 2016 Apr; 22(7-8):610-20. PubMed ID: 26914219 [TBL] [Abstract][Full Text] [Related]
11. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo. Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424 [TBL] [Abstract][Full Text] [Related]
12. Hybrid fabrication of photo-clickable vascular hydrogels with additive manufactured titanium implants for enhanced osseointegration and vascularized bone formation. Li J; Cui X; Lindberg GCJ; Alcala-Orozco CR; Hooper GJ; Lim KS; Woodfield TBF Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35320796 [TBL] [Abstract][Full Text] [Related]
14. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837 [TBL] [Abstract][Full Text] [Related]
15. Biomaterial Scaffolds Made of Chemically Cross-Linked Gelatin Microsphere Aggregates (C-GMSs) Promote Vascularized Bone Regeneration. Wang P; Meng X; Wang R; Yang W; Yang L; Wang J; Wang DA; Fan C Adv Healthc Mater; 2022 Jul; 11(13):e2102818. PubMed ID: 35306762 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825 [TBL] [Abstract][Full Text] [Related]
17. Bone beads enveloped with vascular endothelial cells for bone regenerative medicine. Kageyama T; Akieda H; Sonoyama Y; Sato K; Yoshikawa H; Isono H; Hirota M; Kitajima H; Chun YS; Maruo S; Fukuda J Acta Biomater; 2023 Jul; 165():168-179. PubMed ID: 36030051 [TBL] [Abstract][Full Text] [Related]
18. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
19. Multimodular vascularized bone construct comprised of vasculogenic and osteogenic microtissues. Schott NG; Vu H; Stegemann JP Biotechnol Bioeng; 2022 Nov; 119(11):3284-3296. PubMed ID: 35922969 [TBL] [Abstract][Full Text] [Related]
20. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. Sellgren KL; Ma T J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]