These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36138888)

  • 61. EEG-based hybrid QWERTY mental speller with high information transfer rate.
    Katyal EA; Singla R
    Med Biol Eng Comput; 2021 Mar; 59(3):633-661. PubMed ID: 33594631
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Designing a Sum of Squared Correlations Framework for Enhancing SSVEP-Based BCIs.
    Kiran Kumar GR; Ramasubba Reddy M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2044-2050. PubMed ID: 31536009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancing P300-BCI performance using latency estimation.
    Mowla MR; Huggins JE; Thompson DE
    Brain Comput Interfaces (Abingdon); 2017; 4(3):137-145. PubMed ID: 29725608
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 65. Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs.
    Mehdizavareh MH; Hemati S; Soltanian-Zadeh H
    PLoS One; 2020; 15(1):e0226048. PubMed ID: 31935220
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of the Number of Channels and Classification Algorithm on the Performance Robustness to Electrode Shift in Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces.
    Kim H; Im CH
    Front Neuroinform; 2021; 15():750839. PubMed ID: 34744677
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear.
    Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637
    [No Abstract]   [Full Text] [Related]  

  • 70. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel command generation method for SSVEP-based BCI by introducing SSVEP blocking response.
    Yuan X; Zhang L; Sun Q; Lin X; Li C
    Comput Biol Med; 2022 Jul; 146():105521. PubMed ID: 35500376
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A new hybrid BCI paradigm based on P300 and SSVEP.
    Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X
    J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs.
    Wong CM; Wang Z; Wang B; Lao KF; Rosa A; Xu P; Jung TP; Chen CLP; Wan F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2123-2135. PubMed ID: 32841119
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
    Chen X; Wang Y; Nakanishi M; Jung TP; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3993-6. PubMed ID: 25570867
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Decision-Making Selector (DMS) for Integrating CCA-Based Methods to Improve Performance of SSVEP-Based BCIs.
    Zhao J; Zhang W; Wang JH; Li W; Lei C; Chen G; Liang Z; Li X
    IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1128-1137. PubMed ID: 32217479
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
    Liu B; Chen X; Shi N; Wang Y; Gao S; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1998-2007. PubMed ID: 34543200
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimizing SSVEP-Based BCI System towards Practical High-Speed Spelling.
    Tang J; Xu M; Han J; Liu M; Dai T; Chen S; Ming D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731432
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs.
    De Venuto D; Mezzina G
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201381
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.