These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36138911)

  • 1. A Brain-Inspired Model of Hippocampal Spatial Cognition Based on a Memory-Replay Mechanism.
    Xu R; Ruan X; Huang J
    Brain Sci; 2022 Sep; 12(9):. PubMed ID: 36138911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic model of hippocampal reverse replay for reinforcement learning.
    Whelan MT; Jimenez-Rodriguez A; Prescott TJ; Vasilaki E
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36327454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells.
    Gao Y
    Front Comput Neurosci; 2023; 17():1053097. PubMed ID: 36846726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal replay captures the unique topological structure of a novel environment.
    Wu X; Foster DJ
    J Neurosci; 2014 May; 34(19):6459-69. PubMed ID: 24806672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path-finding in real and simulated rats: assessing the influence of path characteristics on navigation learning.
    Tamosiunaite M; Ainge J; Kulvicius T; Porr B; Dudchenko P; Wörgötter F
    J Comput Neurosci; 2008 Dec; 25(3):562-82. PubMed ID: 18446432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observational learning promotes hippocampal remote awake replay toward future reward locations.
    Mou X; Pokhrel A; Suresh P; Ji D
    Neuron; 2022 Mar; 110(5):891-902.e7. PubMed ID: 34965381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct replay signatures for prospective decision-making and memory preservation.
    Wimmer GE; Liu Y; McNamee DC; Dolan RJ
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2205211120. PubMed ID: 36719914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Dyna-Q Algorithm Inspired by the Forward Prediction Mechanism in the Rat Brain for Mobile Robot Path Planning.
    Huang J; Zhang Z; Ruan X
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated Emergence of Hippocampal Replay and Theta Sequences during Post-natal Development.
    Muessig L; Lasek M; Varsavsky I; Cacucci F; Wills TJ
    Curr Biol; 2019 Mar; 29(5):834-840.e4. PubMed ID: 30773370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping.
    Widloski J; Foster DJ
    Neuron; 2022 May; 110(9):1547-1558.e8. PubMed ID: 35180390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics.
    Massi E; Barthélemy J; Mailly J; Dromnelle R; Canitrot J; Poniatowski E; Girard B; Khamassi M
    Front Neurorobot; 2022; 16():864380. PubMed ID: 35812782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Hippocampal Replay in Memory and Planning.
    Ólafsdóttir HF; Bush D; Barry C
    Curr Biol; 2018 Jan; 28(1):R37-R50. PubMed ID: 29316421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampus leads ventral striatum in replay of place-reward information.
    Lansink CS; Goltstein PM; Lankelma JV; McNaughton BL; Pennartz CM
    PLoS Biol; 2009 Aug; 7(8):e1000173. PubMed ID: 19688032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model for spatial cognition combining dorsal and ventral hippocampal place field maps: multiscale navigation.
    Scleidorovich P; Llofriu M; Fellous JM; Weitzenfeld A
    Biol Cybern; 2020 Apr; 114(2):187-207. PubMed ID: 31915905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation.
    Cazin N; Llofriu Alonso M; Scleidorovich Chiodi P; Pelc T; Harland B; Weitzenfeld A; Fellous JM; Dominey PF
    PLoS Comput Biol; 2019 Jul; 15(7):e1006624. PubMed ID: 31306421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of hippocampal replay driven by experience and environmental structure facilitates spatial learning.
    Diekmann N; Cheng S
    Elife; 2023 Mar; 12():. PubMed ID: 36916899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for navigation in unknown environments based on a reservoir of hippocampal sequences.
    Leibold C
    Neural Netw; 2020 Apr; 124():328-342. PubMed ID: 32036230
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.