BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36139110)

  • 21. The nickel site of Bacillus pasteurii UreE, a urease metallo-chaperone, as revealed by metal-binding studies and X-ray absorption spectroscopy.
    Stola M; Musiani F; Mangani S; Turano P; Safarov N; Zambelli B; Ciurli S
    Biochemistry; 2006 May; 45(20):6495-509. PubMed ID: 16700560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal specificity of the Ni(II) and Zn(II) binding sites of the N-terminal and G-domain of
    Hecel A; Kola A; Valensin D; Kozlowski H; Rowinska-Zyrek M
    Dalton Trans; 2021 Sep; 50(36):12635-12647. PubMed ID: 34545874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE.
    Colpas GJ; Brayman TG; Ming LJ; Hausinger RP
    Biochemistry; 1999 Mar; 38(13):4078-88. PubMed ID: 10194322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario.
    Grazioso R; García-Viñuales S; Russo L; D'Abrosca G; Esposito S; Zaccaro L; Iacovino R; Milardi D; Fattorusso R; Malgieri G; Isernia C
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin.
    Neira JL; Rizzuti B; Jiménez-Alesanco A; Palomino-Schätzlein M; Abián O; Velázquez-Campoy A; Iovanna JL
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32933064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-binding properties of an Hpn-like histidine-rich protein.
    Zeng YB; Yang N; Sun H
    Chemistry; 2011 May; 17(21):5852-60. PubMed ID: 21520306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail.
    Zoroddu MA; Kowalik-Jankowska T; Kozlowski H; Molinari H; Salnikow K; Broday L; Costa M
    Biochim Biophys Acta; 2000 Jul; 1475(2):163-8. PubMed ID: 10832031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site.
    Ciurli S; Safarov N; Miletti S; Dikiy A; Christensen SK; Kornetzky K; Bryant DA; Vandenberghe I; Devreese B; Samyn B; Remaut H; van Beeumen J
    J Biol Inorg Chem; 2002 Jun; 7(6):623-31. PubMed ID: 12072968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human annexins A1, A2, and A8 as potential molecular targets for Ni(II) ions.
    Wezynfeld NE; Bossak K; Goch W; Bonna A; Bal W; Frączyk T
    Chem Res Toxicol; 2014 Nov; 27(11):1996-2009. PubMed ID: 25330107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.
    Kaluarachchi H; Altenstein M; Sugumar SR; Balbach J; Zamble DB; Haupt C
    J Mol Biol; 2012 Mar; 417(1-2):28-35. PubMed ID: 22310044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The zinc-binding fragment of HypA from Helicobacter pylori: a tempting site also for nickel ions.
    Rowinska-Zyrek M; Potocki S; Witkowska D; Valensin D; Kozlowski H
    Dalton Trans; 2013 May; 42(17):6012-20. PubMed ID: 23338727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of Mycobacterium tuberculosis NmtR in the apo state: insights into Ni(II)-mediated allostery.
    Lee CW; Chakravorty DK; Chang FM; Reyes-Caballero H; Ye Y; Merz KM; Giedroc DP
    Biochemistry; 2012 Mar; 51(12):2619-29. PubMed ID: 22394357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of Nickel(II) with histones: interactions of Nickel(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a peptide modeling the potential metal binding site in the "C-Tail" region of histone H2A.
    Bal W; Lukszo J; Bialkowski K; Kasprzak KS
    Chem Res Toxicol; 1998 Sep; 11(9):1014-23. PubMed ID: 9760275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the urease metallochaperone UreE.
    Grossoehme NE; Mulrooney SB; Hausinger RP; Wilcox DE
    Biochemistry; 2007 Sep; 46(37):10506-16. PubMed ID: 17711301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.
    Zambelli B; Musiani F; Benini S; Ciurli S
    Acc Chem Res; 2011 Jul; 44(7):520-30. PubMed ID: 21542631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the copper(II)- and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy.
    Laussac JP; Sarkar B
    Biochemistry; 1984 Jun; 23(12):2832-8. PubMed ID: 6547847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular landscape of the interaction between the urease accessory proteins UreE and UreG.
    Merloni A; Dobrovolska O; Zambelli B; Agostini F; Bazzani M; Musiani F; Ciurli S
    Biochim Biophys Acta; 2014 Sep; 1844(9):1662-74. PubMed ID: 24982029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ni(II) and Co(II) sensing by Escherichia coli RcnR.
    Iwig JS; Leitch S; Herbst RW; Maroney MJ; Chivers PT
    J Am Chem Soc; 2008 Jun; 130(24):7592-606. PubMed ID: 18505253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Helicobacter pylori HypA·UreE
    Hu HQ; Huang HT; Maroney MJ
    Biochemistry; 2018 May; 57(20):2932-2942. PubMed ID: 29708738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.