These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 361397)
1. On the mechanism of assembly of the aspartate transcarbamoylase from Escherichia coli. Chan WW Eur J Biochem; 1978 Oct; 90(2):271-81. PubMed ID: 361397 [TBL] [Abstract][Full Text] [Related]
2. Subunit interactions in aspartate transcarbamylase. The interaction between catalytic and regulatory subunits and the effect of ligands. Chan WW J Biol Chem; 1975 Jan; 250(2):661-7. PubMed ID: 1089646 [TBL] [Abstract][Full Text] [Related]
3. High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase. Edge V; Allewell NM; Sturtevant JM Biochemistry; 1985 Oct; 24(21):5899-906. PubMed ID: 3910085 [TBL] [Abstract][Full Text] [Related]
4. Subunit interactions in aspartate transcarbamylase. Characterization of a complex between the catalytic and the regulatory subunits. Mort JS; Chan WW J Biol Chem; 1975 Jan; 250(2):653-60. PubMed ID: 234435 [TBL] [Abstract][Full Text] [Related]
5. Structure and function of aspartate transcarbamoylase studied using chymotrypsin as a probe. Chan WW; Enns CA Can J Biochem; 1978 Jun; 56(6):654-8. PubMed ID: 352490 [TBL] [Abstract][Full Text] [Related]
6. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association. Lennick M; Allewell NM Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6759-63. PubMed ID: 7031660 [TBL] [Abstract][Full Text] [Related]
7. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
8. Pathways of assembly of aspartate transcarbamoylase from catalytic and regulatory subunits. Bothwell M; Schachman HK Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3221-5. PubMed ID: 4606892 [TBL] [Abstract][Full Text] [Related]
9. Further studies on aspartate transcarbamoylase: molecular weight of the c3r6 complex and analysis of succinate inhibition in the native enzyme. Chan WW Can J Biochem; 1976 Dec; 54(12):1061-8. PubMed ID: 797435 [TBL] [Abstract][Full Text] [Related]
10. Zinc interactions with regulatory dimers from Escherichia coli aspartate transcarbamoylase. Jefferson JR; Hunt JB; Ginsburg A Biochemistry; 1990 Jul; 29(28):6687-98. PubMed ID: 2118800 [TBL] [Abstract][Full Text] [Related]
11. Differential scanning calorimetric study of the thermal denaturation of aspartate transcarbamoylase of Escherichia coli. Edge V; Allewell NM; Sturtevant JM Biochemistry; 1988 Oct; 27(21):8081-7. PubMed ID: 3069128 [TBL] [Abstract][Full Text] [Related]
12. Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase. Yuan X; LiCata VJ; Allewell NM J Biol Chem; 1996 Jan; 271(3):1285-94. PubMed ID: 8576114 [TBL] [Abstract][Full Text] [Related]
13. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related]
14. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP; Kantrowitz ER Biochemistry; 1993 Sep; 32(38):10150-8. PubMed ID: 8104480 [TBL] [Abstract][Full Text] [Related]
15. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
16. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0. Hsuanyu Y; Wedler FC Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211 [TBL] [Abstract][Full Text] [Related]
17. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
18. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
19. Subunit interactions in aspartate transcarbamylase. A model for the allosteric mechanism. Chan WW J Biol Chem; 1975 Jan; 250(2):668-74. PubMed ID: 1089647 [TBL] [Abstract][Full Text] [Related]
20. Assembly of the aspartate transcarbamoylase holoenzyme from transcriptionally independent catalytic and regulatory cistrons. Foltermann KF; Shanley MS; Wild JR J Bacteriol; 1984 Mar; 157(3):891-8. PubMed ID: 6365893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]