These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36140028)

  • 1. Antifungal Effect of Brassica Tissues on the Mycotoxigenic Cereal Pathogen
    Ashiq S; Edwards S; Watson A; Blundell E; Back M
    Antibiotics (Basel); 2022 Sep; 11(9):. PubMed ID: 36140028
    [No Abstract]   [Full Text] [Related]  

  • 2. Biofumigation for the Management of
    Ashiq S; Edwards S; Watson A; Back M
    Pathogens; 2022 Nov; 11(12):. PubMed ID: 36558761
    [No Abstract]   [Full Text] [Related]  

  • 3. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida.
    Ngala BM; Haydock PP; Woods S; Back MA
    Pest Manag Sci; 2015 May; 71(5):759-69. PubMed ID: 24965697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the biofumigant capacity of allyl isothiocyanate from several Brassicaceae crops against Fusarium pathogens in maize.
    Vandicke J; De Visschere K; Deconinck S; Leenknecht D; Vermeir P; Audenaert K; Haesaert G
    J Sci Food Agric; 2020 Dec; 100(15):5476-5486. PubMed ID: 32564371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus
    Jian Y; Chen X; Ahmed T; Shang Q; Zhang S; Ma Z; Yin Y
    J Adv Res; 2022 May; 38():1-12. PubMed ID: 35572400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far.
    Kazan K; Gardiner DM
    Mol Plant Pathol; 2018 Mar; 19(3):764-778. PubMed ID: 28411402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constant Isothiocyanate-Release Potentials across Biofumigant Seeding Rates.
    Doheny-Adams T; Lilley CJ; Barker A; Ellis S; Wade R; Atkinson HJ; Urwin PE; Redeker K; Hartley SE
    J Agric Food Chem; 2018 May; 66(20):5108-5116. PubMed ID: 29624055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro inhibition of Sclerotinia sclerotiorum mycelial growth and reduction of sclerotial viability by the volatile bioactive compounds of Brassicaceae crops.
    Dassanayaka MP; Casonato SG; Jones EE
    J Appl Microbiol; 2023 Dec; 134(12):. PubMed ID: 38031341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat.
    Nicolli CP; Machado FJ; Spolti P; Del Ponte EM
    Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colonization dynamic of various crop residues by Fusarium graminearum monitored through real-time PCR measurements.
    Leplat J; Heraud C; Gautheron E; Mangin P; Falchetto L; Steinberg C
    J Appl Microbiol; 2016 Nov; 121(5):1394-1405. PubMed ID: 27541831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.
    Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T
    Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusarium Head Blight of Small Grains in Pennsylvania: Unravelling Species Diversity, Toxin Types, Growth, and Triazole Sensitivity.
    Duffeck MR; Bandara AY; Weerasooriya DK; Collins AA; Jensen PJ; Kuldau GA; Del Ponte EM; Esker PD
    Phytopathology; 2022 Apr; 112(4):794-802. PubMed ID: 34491794
    [No Abstract]   [Full Text] [Related]  

  • 14. Use of Botanicals to Suppress Different Stages of the Life Cycle of
    Drakopoulos D; Luz C; Torrijos R; Meca G; Weber P; Bänziger I; Voegele RT; Six J; Vogelgsang S
    Phytopathology; 2019 Dec; 109(12):2116-2123. PubMed ID: 31600112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive-guided structural optimization of 1,2,3-triazole phenylhydrazones as potential fungicides against Fusarium graminearum.
    Chen Y; Yao K; Wang K; Xiao C; Li K; Khan B; Zhao S; Yan W; Ye Y
    Pestic Biochem Physiol; 2020 Mar; 164():26-32. PubMed ID: 32284133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxigenicity of
    Janaviciene S; Suproniene S; Kadziene G; Pavlenko R; Berzina Z; Bartkevics V
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006203
    [No Abstract]   [Full Text] [Related]  

  • 18. Histology-guided high-resolution AP-SMALDI mass spectrometry imaging of wheat-
    Bhandari DR; Wang Q; Li B; Friedt W; Römpp A; Spengler B; Gottwald S
    Plant Methods; 2018; 14():103. PubMed ID: 30473724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of
    Drakopoulos D; Meca G; Torrijos R; Marty A; Kägi A; Jenny E; Forrer HR; Six J; Vogelgsang S
    Front Microbiol; 2020; 11():1595. PubMed ID: 32849332
    [No Abstract]   [Full Text] [Related]  

  • 20. Genome Sequence of
    Zapparata A; Da Lio D; Somma S; Vicente Muñoz I; Malfatti L; Vannacci G; Moretti A; Baroncelli R; Sarrocco S
    Genome Announc; 2017 Nov; 5(45):. PubMed ID: 29122868
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.