BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36140065)

  • 1. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips.
    Szymborski TR; Czaplicka M; Nowicka AB; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS as tool for the analysis of DNA-chips in a microfluidic platform.
    Strelau KK; Kretschmer R; Möller R; Fritzsche W; Popp J
    Anal Bioanal Chem; 2010 Feb; 396(4):1381-4. PubMed ID: 20033678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micro-nano interface integrated SERS-based microfluidic sensor for miRNA detection using DNAzyme walker amplification.
    Lu Y; Yu Y; Wang Y; Zhou W; Cheng Z; Yu L; Zheng S; Gao R
    Anal Chim Acta; 2023 Dec; 1283():341957. PubMed ID: 37977782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined SERS Microfluidic Chip with Gold Nanocone Array for Effective Early Lung Cancer Prognosis in Mice Model.
    Qian Y; Gu Y; Deng J; Cai Z; Wang Y; Zhou R; Zhu D; Lu H; Wang Z
    Int J Nanomedicine; 2023; 18():3429-3442. PubMed ID: 37383221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria.
    Nowicka AB; Czaplicka M; Szymborski T; Kamińska A
    Anal Bioanal Chem; 2021 Mar; 413(7):2007-2020. PubMed ID: 33507352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms.
    Wen P; Yang F; Zhao H; Xu Y; Li S; Chen L
    Anal Chem; 2024 Jan; 96(4):1454-1461. PubMed ID: 38224075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Varying Expression of EpCAM on the Efficiency of CTCs Detection by SERS-Based Immunomagnetic Optofluidic Device.
    Czaplicka M; Niciński K; Nowicka A; Szymborski T; Chmielewska I; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy.
    Cao X; Ge S; Hua W; Zhou X; Lu W; Gu Y; Li Z; Qian Y
    J Nanobiotechnology; 2022 Jun; 20(1):271. PubMed ID: 35690820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA walker-powered ratiometric SERS cytosensor of circulating tumor cells with single-cell sensitivity.
    Xiong J; Dong C; Zhang J; Fang X; Ni J; Gan H; Li J; Song C
    Biosens Bioelectron; 2022 Oct; 213():114442. PubMed ID: 35679649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells.
    He M; Lin J; Akakuru OU; Xu X; Li Y; Cao Y; Xu Y; Wu A
    Sci China Life Sci; 2022 Mar; 65(3):561-571. PubMed ID: 34258713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS-Based Immunoassay of Myocardial Infarction Biomarkers on a Microfluidic Chip with Plasmonic Nanostripe Microcones.
    Gao R; Mao Y; Ma C; Wang Y; Jia H; Chen X; Lu Y; Zhang D; Yu L
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55414-55422. PubMed ID: 36480247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device.
    Lin HY; Huang CH; Hsieh WH; Liu LH; Lin YC; Chu CC; Wang ST; Kuo IT; Chau LK; Yang CY
    Small; 2014 Nov; 10(22):4700-10. PubMed ID: 25115777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum.
    Cao X; Ge S; Zhou X; Mao Y; Sun Y; Lu W; Ran M
    Biosens Bioelectron; 2022 Jun; 205():114110. PubMed ID: 35219946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy.
    Tycova A; Prikryl J; Foret F
    Electrophoresis; 2017 Aug; 38(16):1977-1987. PubMed ID: 28432695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Liquid Surface Enhanced Raman Scattering Platform Based on Soft Tubular Microfluidics for Label-Free Cell Detection.
    Xu X; Zhao L; Xue Q; Fan J; Hu Q; Tang C; Shi H; Hu B; Tian J
    Anal Chem; 2019 Jul; 91(13):7973-7979. PubMed ID: 31179690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy.
    Durucan O; Rindzevicius T; Schmidt MS; Matteucci M; Boisen A
    ACS Sens; 2017 Oct; 2(10):1400-1404. PubMed ID: 28956441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification.
    Ge S; Li G; Zhou X; Mao Y; Gu Y; Li Z; Gu Y; Cao X
    Talanta; 2022 Aug; 245():123478. PubMed ID: 35436733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection.
    Madiyar FR; Bhana S; Swisher LZ; Culbertson CT; Huang X; Li J
    Nanoscale; 2015 Feb; 7(8):3726-36. PubMed ID: 25641315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.