BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 36140271)

  • 1. The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis.
    Lin SC; Ma C; Chang KJ; Cheong HP; Lee MC; Lan YT; Wang CY; Chiou SH; Huo TI; Hsu TK; Tsai PH; Yang YP
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of regulation of renal ion transport by WNK kinases.
    Huang CL; Yang SS; Lin SH
    Curr Opin Nephrol Hypertens; 2008 Sep; 17(5):519-25. PubMed ID: 18695394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension.
    Meor Azlan NF; Koeners MP; Zhang J
    Acta Pharm Sin B; 2021 May; 11(5):1117-1128. PubMed ID: 34094823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
    Hadchouel J; Ellison DH; Gamba G
    Annu Rev Physiol; 2016; 78():367-89. PubMed ID: 26863326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases.
    Kahle KT; Rinehart J; Lifton RP
    Biochim Biophys Acta; 2010 Dec; 1802(12):1150-8. PubMed ID: 20637866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation.
    Thastrup JO; Rafiqi FH; Vitari AC; Pozo-Guisado E; Deak M; Mehellou Y; Alessi DR
    Biochem J; 2012 Jan; 441(1):325-37. PubMed ID: 22032326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
    Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3.
    Susa K; Sohara E; Takahashi D; Okado T; Rai T; Uchida S
    Biochem Biophys Res Commun; 2017 Sep; 491(3):727-732. PubMed ID: 28743496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension.
    Brown A; Meor Azlan NF; Wu Z; Zhang J
    Acta Pharmacol Sin; 2021 Apr; 42(4):508-517. PubMed ID: 32724175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction.
    Ohta A; Schumacher FR; Mehellou Y; Johnson C; Knebel A; Macartney TJ; Wood NT; Alessi DR; Kurz T
    Biochem J; 2013 Apr; 451(1):111-22. PubMed ID: 23387299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters.
    Alessi DR; Zhang J; Khanna A; Hochdörfer T; Shang Y; Kahle KT
    Sci Signal; 2014 Jul; 7(334):re3. PubMed ID: 25028718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.
    Nishida H; Sohara E; Nomura N; Chiga M; Alessi DR; Rai T; Sasaki S; Uchida S
    Hypertension; 2012 Oct; 60(4):981-90. PubMed ID: 22949526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade.
    Chiga M; Rafiqi FH; Alessi DR; Sohara E; Ohta A; Rai T; Sasaki S; Uchida S
    J Cell Sci; 2011 May; 124(Pt 9):1391-5. PubMed ID: 21486947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo.
    Oi K; Sohara E; Rai T; Misawa M; Chiga M; Alessi DR; Sasaki S; Uchida S
    Biol Open; 2012 Feb; 1(2):120-7. PubMed ID: 23213404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1.
    Richardson C; Rafiqi FH; Karlsson HK; Moleleki N; Vandewalle A; Campbell DG; Morrice NA; Alessi DR
    J Cell Sci; 2008 Mar; 121(Pt 5):675-84. PubMed ID: 18270262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WNK kinases: molecular regulators of integrated epithelial ion transport.
    Kahle KT; Wilson FH; Lalioti M; Toka H; Qin H; Lifton RP
    Curr Opin Nephrol Hypertens; 2004 Sep; 13(5):557-62. PubMed ID: 15300163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WNK lies upstream of kinases involved in regulation of ion transporters.
    Gamba G
    Biochem J; 2005 Oct; 391(Pt 1):e1-3. PubMed ID: 16173916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder.
    Sohara E; Uchida S
    Nephrol Dial Transplant; 2016 Sep; 31(9):1417-24. PubMed ID: 26152401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiological roles of WNK kinases in the kidney.
    Uchida S
    Pflugers Arch; 2010 Sep; 460(4):695-702. PubMed ID: 20490538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
    Grimm PR; Coleman R; Delpire E; Welling PA
    J Am Soc Nephrol; 2017 Sep; 28(9):2597-2606. PubMed ID: 28442491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.