These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36140653)

  • 1. A Novel Rolling Circle Amplification-Based Detection of SARS-CoV-2 with Multi-Region Padlock Hybridization.
    Kumari R; Lim JW; Sullivan MR; Malampy R; Baush C; Smolina I; Robin H; Demidov VV; Ugolini GS; Auclair JR; Konry T
    Diagnostics (Basel); 2022 Sep; 12(9):. PubMed ID: 36140653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence.
    Tian B; Gao F; Fock J; Dufva M; Hansen MF
    Biosens Bioelectron; 2020 Oct; 165():112356. PubMed ID: 32510339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of SARS-CoV-2 RNA through tandem isothermal gene amplification without reverse transcription.
    Lee H; Lee H; Hwang SH; Jeong W; Kim DE
    Anal Chim Acta; 2022 Jun; 1212():339909. PubMed ID: 35623783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorometric Detection of SARS-CoV-2 Single-Nucleotide Variant L452R Using Ligation-Based Isothermal Gene Amplification.
    Kyung K; Ku J; Cho E; Ryu J; Woo J; Jung W; Kim DE
    Bioengineering (Basel); 2023 Sep; 10(10):. PubMed ID: 37892846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions.
    Ishigaki Y; Sato K
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection.
    Jain S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Jun; 146(13):4340-4347. PubMed ID: 34106115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping.
    Soares RRG; Madaboosi N; Nilsson M
    Acc Chem Res; 2021 Nov; 54(21):3979-3990. PubMed ID: 34637281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cascade amplification strategy based on rolling circle amplification and hybridization chain reaction for ultrasensitive detection of pathogens.
    Jiang H; Lv X; Li Y; Deng Y; Yu S
    Anal Methods; 2023 May; 15(19):2382-2390. PubMed ID: 37132418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lateral Flow Assay for Nucleic Acid Detection Based on Rolling Circle Amplification Using Capture Ligand-Modified Oligonucleotides.
    Lee HN; Lee J; Kang YK; Lee JH; Yang S; Chung HJ
    Biochip J; 2022; 16(4):441-450. PubMed ID: 36091642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B
    Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real time PCR and specific suspension array readout.
    Eriksson R; Jobs M; Ekstrand C; Ullberg M; Herrmann B; Landegren U; Nilsson M; Blomberg J
    J Microbiol Methods; 2009 Aug; 78(2):195-202. PubMed ID: 19490930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Universal Strategy for Enhancing the Circulating miRNAs' Detection Performance of Rolling Circle Amplification by Using a Dual-Terminal Stem-Loop Padlock.
    Xu H; Wu X; Liu Q; Yang C; Shen M; Wang Y; Liu S; Zhao S; Xiao T; Sun M; Ding Z; Bao J; Chen M; Gao M
    ACS Nano; 2024 Jan; 18(1):436-450. PubMed ID: 38149638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of fusion transcripts with padlock probe-based continuous cascade amplification (P-CCA).
    Chen Y; Su F; Cheng Y; He X; Li Z
    Analyst; 2022 May; 147(10):2207-2214. PubMed ID: 35466330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNase H-dependent amplification improves the accuracy of rolling circle amplification combined with loop-mediated isothermal amplification (RCA-LAMP).
    Hasegawa T; Hapsari D; Iwahashi H
    PeerJ; 2021; 9():e11851. PubMed ID: 34395086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor.
    Shi D; Huang J; Chuai Z; Chen D; Zhu X; Wang H; Peng J; Wu H; Huang Q; Fu W
    Biosens Bioelectron; 2014 Dec; 62():280-7. PubMed ID: 25022511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual discrimination mode for improved specificity towards let-7a detection via a single-base mutated padlock probe-based exponential rolling circle amplification.
    Li R; Wang Y; Wang P; Lu J
    Luminescence; 2017 Dec; 32(8):1574-1581. PubMed ID: 28685952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of rolling circle amplification and optomagnetic detection on a polymer chip.
    Garbarino F; Minero GAS; Rizzi G; Fock J; Hansen MF
    Biosens Bioelectron; 2019 Oct; 142():111485. PubMed ID: 31301578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic point-of-care device for detection of early strains and B.1.1.7 variant of SARS-CoV-2 virus.
    Lim J; Stavins R; Kindratenko V; Baek J; Wang L; White K; Kumar J; Valera E; King WP; Bashir R
    Lab Chip; 2022 Mar; 22(7):1297-1309. PubMed ID: 35244660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.