BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 36140730)

  • 1. African Swine Fever Re-Emerging in Estonia: The Role of Seropositive Wild Boar from an Epidemiological Perspective.
    Schulz K; Schulz J; Staubach C; Blome S; Nurmoja I; Conraths FJ; Sauter-Louis C; Viltrop A
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of African swine fever virus in free-ranging wild boar in Southeast Asia.
    Denstedt E; Porco A; Hwang J; Nga NTT; Ngoc PTB; Chea S; Khammavong K; Milavong P; Sours S; Osbjer K; Tum S; Douangngeun B; Theppanya W; Van Long N; Thanh Phuong N; Tin Vinh Quang L; Van Hung V; Hoa NT; Le Anh D; Fine A; Pruvot M
    Transbound Emerg Dis; 2021 Sep; 68(5):2669-2675. PubMed ID: 33351995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios.
    O'Neill X; White A; Ruiz-Fons F; Gortázar C
    Sci Rep; 2020 Apr; 10(1):5895. PubMed ID: 32246098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The African Swine Fever Epidemic in Wild Boar (
    Mačiulskis P; Masiulis M; Pridotkas G; Buitkuvienė J; Jurgelevičius V; Jacevičienė I; Zagrabskaitė R; Zani L; Pilevičienė S
    Vet Sci; 2020 Jan; 7(1):. PubMed ID: 32019088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Vaccination Strategies against African Swine Fever Using Spatial Data from Wild Boars in Lithuania.
    Gervasi V; Masiulis M; Bušauskas P; Bellini S; Guberti V
    Viruses; 2024 Jan; 16(1):. PubMed ID: 38275963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effectiveness of Protection and Surveillance Zones in Detecting Further African Swine Fever Outbreaks in Domestic Pigs-Experience of the Baltic States.
    Lamberga K; Viltrop A; Nurmoja I; Masiulis M; Bušauskas P; Oļševskis E; Seržants M; Laddomada A; Ardelean F; Depner K
    Viruses; 2024 Feb; 16(3):. PubMed ID: 38543702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiological analysis of African swine fever in the European Union during 2023.
    ; Ståhl K; Boklund AE; Podgórski T; Vergne T; Abrahantes JC; Cattaneo E; Papanikolaou A; Mur L
    EFSA J; 2024 May; 22(5):e8809. PubMed ID: 38756349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemiological analyses on African swine fever in the Baltic countries and Poland.
    ; Cortiñas Abrahantes J; Gogin A; Richardson J; Gervelmeyer A
    EFSA J; 2017 Mar; 15(3):e04732. PubMed ID: 32625438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal analysis of African swine fever front-wave velocity in wild boar: implications for surveillance and control strategies.
    Martínez Avilés M; Montes F; Sacristán I; de la Torre A; Iglesias I
    Front Vet Sci; 2024; 11():1353983. PubMed ID: 38596463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R
    Marcon A; Linden A; Satran P; Gervasi V; Licoppe A; Guberti V
    Vet Sci; 2019 Dec; 7(1):. PubMed ID: 31892104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From virtually extinct to superabundant in 35 years: establishment, population growth and shifts in management focus of the Swedish wild boar (Sus scrofa) population.
    Bergqvist G; Kindberg J; Elmhagen B
    BMC Zool; 2024 Jul; 9(1):14. PubMed ID: 38951881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control.
    Pepin KM; Golnar AJ; Abdo Z; Podgórski T
    Ecol Evol; 2020 Mar; 10(6):2846-2859. PubMed ID: 32211160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many lifetime growth trajectories for a single mammal.
    Veylit L; Sæther BE; Gaillard JM; Baubet E; Gamelon M
    Ecol Evol; 2021 Nov; 11(21):14789-14804. PubMed ID: 34765141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic characterisation of tick-borne encephalitis virus from Lithuania.
    Sidorenko M; Radzijevskaja J; Mickevičius S; Bratchikov M; Mardosaitė-Busaitienė D; Sakalauskas P; Paulauskas A
    PLoS One; 2024; 19(2):e0296472. PubMed ID: 38324618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the relationship between short tandem repeats and lactation performance of Xinjiang Holstein cows.
    Li Y; Liu L; Zunongjiang A; Cao L; Fan Y; Hu B; Zhang S
    Trop Anim Health Prod; 2023 Jun; 55(4):238. PubMed ID: 37322113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the Genetic Structure of Lithuania's Wild Boar (
    Griciuvienė L; Janeliūnas Ž; Pilevičienė S; Jurgelevičius V; Paulauskas A
    Genes (Basel); 2022 Aug; 13(9):. PubMed ID: 36140730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. African swine fever in the Lithuanian wild boar population in 2018: a snapshot.
    Pautienius A; Schulz K; Staubach C; Grigas J; Zagrabskaite R; Buitkuviene J; Stankevicius R; Streimikyte Z; Oberauskas V; Zienius D; Salomskas A; Sauter-Louis C; Stankevicius A
    Virol J; 2020 Oct; 17(1):148. PubMed ID: 33028388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014-2017.
    Pautienius A; Grigas J; Pileviciene S; Zagrabskaite R; Buitkuviene J; Pridotkas G; Stankevicius R; Streimikyte Z; Salomskas A; Zienius D; Stankevicius A
    Virol J; 2018 Nov; 15(1):177. PubMed ID: 30454055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of habitat fragmentation on the genetic structure of wild boar (Sus scrofa) population in Lithuania.
    Griciuvienė L; Janeliūnas Ž; Jurgelevičius V; Paulauskas A
    BMC Genom Data; 2021 Nov; 22(1):53. PubMed ID: 34837959
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.