BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36140797)

  • 1. Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom (
    Geng Y; Zhang S; Yang N; Qin L
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140797
    [No Abstract]   [Full Text] [Related]  

  • 2. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics.
    Liu Y; Hu H; Cai M; Liang X; Wu X; Wang A; Chen X; Li X; Xiao C; Huang L; Xie Y; Wu Q
    Gene; 2022 Jan; 808():145996. PubMed ID: 34634440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
    Park YJ; Jeong YU; Kong WS
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30104475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary exploration on the ectomycorrhizal status of a wild edible
    Geng Y; Zhang S; Yang N; Qin L
    Mycoscience; 2023; 64(2):83-95. PubMed ID: 37168242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of Clostridium species associated with vacuum-packed meat spoilage.
    Palevich N; Palevich FP; Maclean PH; Altermann E; Gardner A; Burgess S; Mills J; Brightwell G
    Food Microbiol; 2021 May; 95():103687. PubMed ID: 33397617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa.
    Yu F; Song J; Liang J; Wang S; Lu J
    Genomics; 2020 Jan; 112(1):603-614. PubMed ID: 31004699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of Carbohydrate Active Enzymes in the
    Yu HW; Im JH; Kong WS; Park YJ
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33374587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight
    Lin G; Liu Q; Wang L; Li H; Zhao J; Zhang H; Wang G; Chen W
    Nutrients; 2022 Jun; 14(11):. PubMed ID: 35684146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Lignocellulose-Degrading Enzyme System of
    Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM
    Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
    Zhao X; Gänzle MG
    Int J Food Microbiol; 2018 May; 272():12-21. PubMed ID: 29505955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome-Level Genome Sequences, Comparative Genomic Analyses, and Secondary-Metabolite Biosynthesis Evaluation of the Medicinal Edible Mushroom Laetiporus sulphureus.
    Dong WG; Wang ZX; Feng XL; Zhang RQ; Shen DY; Du S; Gao JM; Qi J
    Microbiol Spectr; 2022 Oct; 10(5):e0243922. PubMed ID: 36200896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes.
    Zheng Y; Maruoka M; Nanatani K; Hidaka M; Abe N; Kaneko J; Sakai Y; Abe K; Yokota A; Yabe S
    J Biosci Bioeng; 2021 Jun; 131(6):622-630. PubMed ID: 33676867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis.
    Duan Y; Han H; Qi J; Gao JM; Xu Z; Wang P; Zhang J; Liu C
    BMC Genomics; 2022 Apr; 23(1):314. PubMed ID: 35443619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil.
    Song J; Sun X; Luo X; He C; Huang Z; Zhao J; He B; Du X; Wang X; Xiang W
    Antonie Van Leeuwenhoek; 2021 Oct; 114(10):1517-1527. PubMed ID: 34324105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Draft genome of the glucose tolerant β-glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes.
    Kooloth-Valappil P; Christopher M; Sreeja-Raju A; Mathew RM; Kuni-Parambil R; Abraham A; Sankar M; Pandey A; Sukumaran RK
    Fungal Genet Biol; 2021 Jun; 151():103551. PubMed ID: 33737204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi).
    Gong W; Wang Y; Xie C; Zhou Y; Zhu Z; Peng Y
    Genomics; 2020 May; 112(3):2393-2399. PubMed ID: 31978421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.