These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36141109)
1. Elliptic Flowers: New Types of Dynamics to Study Classical and Quantum Chaos. Attarchi H; Bunimovich LA Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141109 [TBL] [Abstract][Full Text] [Related]
2. Physical versus mathematical billiards: From regular dynamics to chaos and back. Bunimovich LA Chaos; 2019 Sep; 29(9):091105. PubMed ID: 31575128 [TBL] [Abstract][Full Text] [Related]
4. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics. Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765 [TBL] [Abstract][Full Text] [Related]
5. Prevalence of marginally unstable periodic orbits in chaotic billiards. Altmann EG; Friedrich T; Motter AE; Kantz H; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016205. PubMed ID: 18351924 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
7. No-slip billiards with particles of variable mass distribution. Ahmed J; Cox C; Wang B Chaos; 2022 Feb; 32(2):023102. PubMed ID: 35232024 [TBL] [Abstract][Full Text] [Related]
8. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
9. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards. Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299 [TBL] [Abstract][Full Text] [Related]
10. Time-reversal-invariant hexagonal billiards with a point symmetry. Lima TA; do Carmo RB; Terto K; de Aguiar FM Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857 [TBL] [Abstract][Full Text] [Related]
11. Quantum and wave dynamical chaos in superconducting microwave billiards. Dietz B; Richter A Chaos; 2015 Sep; 25(9):097601. PubMed ID: 26428554 [TBL] [Abstract][Full Text] [Related]
15. Quantum chaotic trajectories in integrable right triangular billiards. de Sales JA; Florencio J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016216. PubMed ID: 12636594 [TBL] [Abstract][Full Text] [Related]
16. Perturbations and chaos in quantum maps. Bullo DE; Wisniacki DA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026206. PubMed ID: 23005844 [TBL] [Abstract][Full Text] [Related]
17. Spectral fluctuations of billiards with mixed dynamics: from time series to superstatistics. Abul-Magd AY; Dietz B; Friedrich T; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046202. PubMed ID: 18517705 [TBL] [Abstract][Full Text] [Related]