These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36141132)

  • 1. A Neural Network-Based Mesh Quality Indicator for Three-Dimensional Cylinder Modelling.
    Chen X; Wang Z; Liu J; Gong C; Pang Y
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-airway surface mesh smoothing based on graph convolutional neural networks.
    Ho TT; Tran MT; Cui X; Lin CL; Baek S; Kim WJ; Lee CH; Jin GY; Chae KJ; Choi S
    Comput Methods Programs Biomed; 2024 Apr; 246():108061. PubMed ID: 38341897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic triangulated mesh generation of pulmonary airways from segmented lung 3DCTs for computational fluid dynamics.
    Lauria M; Singhrao K; Stiehl B; Low D; Goldin J; Barjaktarevic I; Santhanam A
    Int J Comput Assist Radiol Surg; 2022 Jan; 17(1):185-197. PubMed ID: 34328596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulations of aerosol delivery to the human lung with an idealized laryngeal model, image-based airway model, and automatic meshing algorithm.
    Miyawaki S; Hoffman EA; Lin CL
    Comput Fluids; 2017 Apr; 148():1-9. PubMed ID: 28959080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dataset and mesh of the CFD numerical model for the modelling and simulation of a PEM fuel cell.
    Iranzo A; Toharias B; Suárez C; Rosa F; Pino J
    Data Brief; 2022 Apr; 41():107987. PubMed ID: 35257018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Mesh Density on Airflow and Particle Deposition in Sinonasal Airway Modeling.
    Frank-Ito DO; Wofford M; Schroeter JD; Kimbell JS
    J Aerosol Med Pulm Drug Deliv; 2016 Feb; 29(1):46-56. PubMed ID: 26066089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Polyhedral Mesh Style for Predicting Aerosol Deposition in Representative Models of the Conducting Airways.
    Thomas ML; Longest PW
    J Aerosol Sci; 2022 Jan; 159():. PubMed ID: 34658403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and hexahedral meshing of cerebral arterial networks from centerlines.
    Decroocq M; Frindel C; Rougé P; Ohta M; Lavoué G
    Med Image Anal; 2023 Oct; 89():102912. PubMed ID: 37549612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.
    Kolandaivelu K; O'Brien CC; Shazly T; Edelman ER; Kolachalama VB
    J R Soc Interface; 2015 Mar; 12(104):20141073. PubMed ID: 25652458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing.
    Dyedov V; Einstein D; Jiao X; Kuprat A; Carson J; Pin FD
    Int J Numer Methods Eng; 2009 Aug; 79(8):907-945. PubMed ID: 20161102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.
    Spiegel M; Redel T; Zhang Y; Struffert T; Hornegger J; Grossman RG; Doerfler A; Karmonik C
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2787-90. PubMed ID: 19964600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.
    Ghaffari M; Tangen K; Alaraj A; Du X; Charbel FT; Linninger AA
    Comput Biol Med; 2017 Dec; 91():353-365. PubMed ID: 29126049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Different Meshing Techniques for the Case of a Stented Artery.
    Lotfi A; Simmons A; Barber T
    J Biomech Eng; 2016 Mar; 138(3):4032502. PubMed ID: 26784359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automating Model Generation for Image-Based Cardiac Flow Simulation.
    Kong F; Shadden SC
    J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32766785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Software to Visualize, Edit, Model and Mesh Vascular Networks.
    Decroocq M; Lavoue G; Ohta M; Frindel C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2208-2214. PubMed ID: 36085963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.