These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36141455)
1. The Palmo T; Abbasi BA; Chanana N; Sharma K; Faruq M; Thinlas T; Abdin MZ; Pasha Q Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141455 [TBL] [Abstract][Full Text] [Related]
2. CYBA and GSTP1 variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema. Mishra A; Ali Z; Vibhuti A; Kumar R; Alam P; Ram R; Thinlas T; Mohammad G; Pasha MA Clin Sci (Lond); 2012 Mar; 122(6):299-309. PubMed ID: 21973220 [TBL] [Abstract][Full Text] [Related]
3. Shorter telomere length, higher telomerase activity in association with tankyrase gene polymorphism contribute to high-altitude pulmonary edema. Miglani M; Rain M; Pasha Q; Raj VS; Thinlas T; Mohammad G; Gupta A; Pandey RP; Vibhuti A Hum Mol Genet; 2020 Nov; 29(18):3094-3106. PubMed ID: 32916703 [TBL] [Abstract][Full Text] [Related]
4. Susceptibility to high-altitude pulmonary edema is associated with circulating miRNA levels under hypobaric hypoxia conditions. Alam P; Agarwal G; Kumar R; Mishra A; Saini N; Mohammad G; Pasha MAQ Am J Physiol Lung Cell Mol Physiol; 2020 Aug; 319(2):L360-L368. PubMed ID: 32692577 [TBL] [Abstract][Full Text] [Related]
5. Interactions among vascular-tone modulators contribute to high altitude pulmonary edema and augmented vasoreactivity in highlanders. Ali Z; Mishra A; Kumar R; Alam P; Pandey P; Ram R; Thinlas T; Mohammad G; Pasha MA PLoS One; 2012; 7(9):e44049. PubMed ID: 22984459 [TBL] [Abstract][Full Text] [Related]
6. EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation. Mishra A; Mohammad G; Thinlas T; Pasha MA Clin Sci (Lond); 2013 Apr; 124(7):479-89. PubMed ID: 23130672 [TBL] [Abstract][Full Text] [Related]
7. The Telomere-Telomerase System Is Detrimental to Health at High-Altitude. Pasha Q; Rain M; Tasnim S; Kanipakam H; Thinlas T; Mohammad G Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767300 [TBL] [Abstract][Full Text] [Related]
8. Unveiling the interactions among BMPR-2, ALK-1 and 5-HTT genes in the pathophysiology of HAPE. Ali Z; Waseem M; Kumar R; Pandey P; Mohammad G; Qadar Pasha MA Gene; 2016 Aug; 588(2):163-72. PubMed ID: 27196063 [TBL] [Abstract][Full Text] [Related]
10. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation. Pandey P; Mohammad G; Singh Y; Qadar Pasha MA Appl Clin Genet; 2015; 8():257-67. PubMed ID: 26586960 [TBL] [Abstract][Full Text] [Related]
11. Hypobaric hypoxia modulated structural characteristics of circulating cell-free DNA in high-altitude pulmonary edema. Ali M; Choudhary R; Singh K; Kumari S; Kumar R; Graham BB; Pasha MAQ; Rabyang S; Thinlas T; Mishra A Am J Physiol Lung Cell Mol Physiol; 2024 Apr; 326(4):L496-L507. PubMed ID: 38349115 [TBL] [Abstract][Full Text] [Related]
12. Differential methylation in EGLN1 associates with blood oxygen saturation and plasma protein levels in high-altitude pulmonary edema. Sharma K; Mishra A; Singh H; Thinlas T; Pasha MAQ Clin Epigenetics; 2022 Sep; 14(1):123. PubMed ID: 36180894 [TBL] [Abstract][Full Text] [Related]
13. High-altitude pulmonary edema is aggravated by risk loci and associated transcription factors in HIF-prolyl hydroxylases. Sharma K; Mishra A; Singh HN; Parashar D; Alam P; Thinlas T; Mohammad G; Kukreti R; Syed MA; Pasha MAQ Hum Mol Genet; 2021 Aug; 30(18):1734-1749. PubMed ID: 34007987 [TBL] [Abstract][Full Text] [Related]
14. Endothelin-1 gene variants and levels associate with adaptation to hypobaric hypoxia in high-altitude natives. Rajput C; Najib S; Norboo T; Afrin F; Qadar Pasha MA Biochem Biophys Res Commun; 2006 Mar; 341(4):1218-24. PubMed ID: 16466695 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of the ventilatory response in subjects susceptible to high altitude pulmonary edema during acute and prolonged hypoxia. Schirlo C; Pavlicek V; Jacomet A; Gibbs JS; Koller E; Oelz O; Seebauer M; Kohl J High Alt Med Biol; 2002; 3(3):267-76. PubMed ID: 12396880 [TBL] [Abstract][Full Text] [Related]
16. Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study. Barker KR; Conroy AL; Hawkes M; Murphy H; Pandey P; Kain KC J Travel Med; 2016 Mar; 23(3):. PubMed ID: 26984355 [TBL] [Abstract][Full Text] [Related]
17. Polymorphisms of renin--angiotensin system genes as a risk factor for high-altitude pulmonary oedema. Stobdan T; Ali Z; Khan AP; Nejatizadeh A; Ram R; Thinlas T; Mohammad G; Norboo T; Himashree G; Qadar Pasha M J Renin Angiotensin Aldosterone Syst; 2011 Jun; 12(2):93-101. PubMed ID: 21393362 [TBL] [Abstract][Full Text] [Related]
18. Elevated Vasodilatory Cyclases and Shorter Telomere Length Contribute to High-Altitude Pulmonary Edema. Rain M; Chaudhary H; Kukreti R; Thinlas T; Mohammad G; Pasha Q High Alt Med Biol; 2018 Mar; 19(1):60-68. PubMed ID: 29443612 [TBL] [Abstract][Full Text] [Related]
19. Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Mishra A; Kohli S; Dua S; Thinlas T; Mohammad G; Pasha MA Proc Natl Acad Sci U S A; 2015 May; 112(19):6134-9. PubMed ID: 25918383 [TBL] [Abstract][Full Text] [Related]
20. Effects of hypobaric hypoxia on vascular endothelial growth factor and the acute phase response in subjects who are susceptible to high-altitude pulmonary oedema. Pavlicek V; Marti HH; Grad S; Gibbs JS; Kol C; Wenger RH; Gassmann M; Kohl J; Maly FE; Oelz O; Koller EA; Schirlo C Eur J Appl Physiol; 2000 Apr; 81(6):497-503. PubMed ID: 10774874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]