These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36141455)
21. Potential correlation between EDN1 gene polymorphisms with preeclampsia. Li J; Yin W; Liu MS; Mao LJ; Wang XH Eur Rev Med Pharmacol Sci; 2020 Feb; 24(4):1602-1608. PubMed ID: 32141526 [TBL] [Abstract][Full Text] [Related]
22. Gene polymorphisms and high-altitude pulmonary edema susceptibility: a 2011 update. Luo Y; Zou Y; Gao Y Respiration; 2012; 84(2):155-62. PubMed ID: 22508396 [TBL] [Abstract][Full Text] [Related]
23. Positive Association of D Allele of ACE Gene With High Altitude Pulmonary Edema in Indian Population. Bhagi S; Srivastava S; Tomar A; Bala Singh S; Sarkar S Wilderness Environ Med; 2015 Jun; 26(2):124-32. PubMed ID: 25683681 [TBL] [Abstract][Full Text] [Related]
24. Polymorphisms of angiotensin converting enzyme and nitric oxide synthase 3 genes as risk factors of high-altitude pulmonary edema: a case-control study and meta-analysis. Wang QQ; Yu L; Huang GR; Zhang L; Liu YQ; Wang TW; Lin H; Ren Q; Liu P; Huang L; Qin J; Wu GM; Li QN; Li YF; Xiong HY Tohoku J Exp Med; 2013 Apr; 229(4):255-66. PubMed ID: 23603420 [TBL] [Abstract][Full Text] [Related]
25. Polymorphisms of human vascular endothelial growth factor gene in high-altitude pulmonary oedema susceptible subjects. Hanaoka M; Droma Y; Ota M; Ito M; Katsuyama Y; Kubo K Respirology; 2009 Jan; 14(1):46-52. PubMed ID: 19144048 [TBL] [Abstract][Full Text] [Related]
26. Transcriptomic profiling reveals gene expression kinetics in patients with hypoxia and high altitude pulmonary edema. Yuhong L; Tana W; Zhengzhong B; Feng T; Qin G; Yingzhong Y; Wei G; Yaping W; Langelier C; Rondina MT; Ge RL Gene; 2018 Apr; 651():200-205. PubMed ID: 29366758 [TBL] [Abstract][Full Text] [Related]
27. Polymorphisms of the tissue inhibitor of metalloproteinase 3 gene are associated with resistance to high-altitude pulmonary edema (HAPE) in a Japanese population: a case control study using polymorphic microsatellite markers. Kobayashi N; Hanaoka M; Droma Y; Ito M; Katsuyama Y; Kubo K; Ota M PLoS One; 2013; 8(8):e71993. PubMed ID: 23991023 [TBL] [Abstract][Full Text] [Related]
28. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Saxena S; Kumar R; Madan T; Gupta V; Muralidhar K; Sarma PU Chest; 2005 Sep; 128(3):1611-9. PubMed ID: 16162765 [TBL] [Abstract][Full Text] [Related]
29. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Hotta J; Hanaoka M; Droma Y; Katsuyama Y; Ota M; Kobayashi T Chest; 2004 Sep; 126(3):825-30. PubMed ID: 15364762 [TBL] [Abstract][Full Text] [Related]
30. Deregulated hypoxic response in myeloid cells: A model for high-altitude pulmonary oedema (HAPE). Gojkovic M; Darmasaputra GS; Veliça P; Rundqvist H; Johnson RS Acta Physiol (Oxf); 2020 Jun; 229(2):e13461. PubMed ID: 32129933 [TBL] [Abstract][Full Text] [Related]
31. Heterozygotes of NOS3 polymorphisms contribute to reduced nitrogen oxides in high-altitude pulmonary edema. Ahsan A; Mohd G; Norboo T; Baig MA; Pasha MA Chest; 2006 Nov; 130(5):1511-9. PubMed ID: 17099031 [TBL] [Abstract][Full Text] [Related]
32. Acute hypoxic pulmonary vascular response does not accompany plasma endothelin-1 elevation in subjects susceptible to high altitude pulmonary edema. Droma Y; Ge RL; Tanaka M; Koizumi T; Hanaoka M; Miyahara T; Yamaguchi S; Okada K; Yoshikawa S; Fujimoto K; Matsuzawa Y; Kubo K; Kobayashi T; Sekiguchi M Intern Med; 1996 Apr; 35(4):257-60. PubMed ID: 8739777 [TBL] [Abstract][Full Text] [Related]
33. Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. Sydykov A; Mamazhakypov A; Maripov A; Kosanovic D; Weissmann N; Ghofrani HA; Sarybaev AS; Schermuly RT Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33578749 [TBL] [Abstract][Full Text] [Related]
34. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Berger MM; Hesse C; Dehnert C; Siedler H; Kleinbongard P; Bardenheuer HJ; Kelm M; Bärtsch P; Haefeli WE Am J Respir Crit Care Med; 2005 Sep; 172(6):763-7. PubMed ID: 15947284 [TBL] [Abstract][Full Text] [Related]
35. Association between single nucleotide polymorphisms in ADRB2, GNB3 and GSTP1 genes and high-altitude pulmonary edema (HAPE) in the Chinese Han population. He Y; Liu L; Xu P; He N; Yuan D; Kang L; Jin T Oncotarget; 2017 Mar; 8(11):18206-18212. PubMed ID: 28212552 [TBL] [Abstract][Full Text] [Related]
36. The blunted vascular endothelial growth factor-A (VEGF-A) response to high-altitude hypoxia and genetic variants in the promoter region of the Droma Y; Hanaoka M; Kinjo T; Kobayashi N; Yasuo M; Kitaguchi Y; Ota M PeerJ; 2022; 10():e13893. PubMed ID: 35996666 [TBL] [Abstract][Full Text] [Related]
37. Might a high hemoglobin mass be involved in non-cardiogenic pulmonary edema? The case of the chronic maladaptation to high-altitude in the Andes. Sánchez K; Ballaz SJ Med Hypotheses; 2021 Jan; 146():110418. PubMed ID: 33268002 [TBL] [Abstract][Full Text] [Related]
38. Probable role of beta2-adrenergic receptor gene haplotype in high-altitude pulmonary oedema. Stobdan T; Kumar R; Mohammad G; Thinlas T; Norboo T; Iqbal M; Pasha MA Respirology; 2010 May; 15(4):651-8. PubMed ID: 20546540 [TBL] [Abstract][Full Text] [Related]
39. Mitochondrial DNA mutations contribute to high altitude pulmonary edema via increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. Sharma S; Singh Y; Sandhir R; Singh S; Ganju L; Kumar B; Varshney R Biochim Biophys Acta Bioenerg; 2021 Aug; 1862(8):148431. PubMed ID: 33862004 [TBL] [Abstract][Full Text] [Related]
40. MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility in the Chinese population. Si L; Wang H; Jiang Y; Yi Y; Wang R; Long Q; Zhao Y Sci Rep; 2022 Mar; 12(1):4346. PubMed ID: 35288592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]