These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36142)

  • 41. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine.
    Eilam Y; Lavi H; Grossowicz N
    J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interrelationships of ion transport in rat submaxillary duct epithelium.
    Knauf H; Lubcke R; Kreutz W; Sachs G
    Am J Physiol; 1982 Feb; 242(2):F132-9. PubMed ID: 6278941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Some characteristics of Ca2+ uptake by yeast cells.
    Borbolla M; Peña A
    J Membr Biol; 1980 May; 54(2):149-56. PubMed ID: 6157027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of potassium depolarization on sodium-dependent calcium efflux from goldfish heart ventricles and guinea-pig atria.
    Busselen P
    J Physiol; 1982 Jun; 327():309-24. PubMed ID: 7120140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.
    Cotterrell D; Whittam R
    J Physiol; 1971 May; 214(3):509-36. PubMed ID: 4996368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cotransport of phosphate and sodium by yeast.
    Roomans GM; Blasco F; Borst-Pauwels GW
    Biochim Biophys Acta; 1977 May; 467(1):65-71. PubMed ID: 16650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methanogenesis and the K+ transport system are activated by divalent cations in ammonia-treated cells of Methanospirillum hungatei.
    Sprott GD; Shaw KM; Jarrell KF
    J Biol Chem; 1985 Aug; 260(16):9244-50. PubMed ID: 4019470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle.
    Beaugé LA; Ortiz O
    J Physiol; 1972 Nov; 226(3):675-97. PubMed ID: 4637626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Regulation of Na, K-ATPase activity by monovalent cations].
    Boldyrev AA; Kozlova IO; Smirnova IN; Shvets VI
    Biokhimiia; 1977 Aug; 42(8):1466-70. PubMed ID: 20994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hormone-sensitive magnesium transport in murine S49 lymphoma cells: characterization and specificity for magnesium.
    Erdos JJ; Maguire ME
    J Physiol; 1983 Apr; 337():351-71. PubMed ID: 6875935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Schizosaccharomyces pombe possesses two plasma membrane alkali metal cation/H antiporters differing in their substrate specificity.
    Papouskova K; Sychrova H
    FEMS Yeast Res; 2007 Mar; 7(2):188-95. PubMed ID: 17266728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The site of action of 2,4-dinitrophenol and salicylic acid upon the uncoupler-induced K+ efflux from non-metabolizing yeast.
    Hoeberichts JA; Hulsebos TJ; Van Wezenbeek PM; Borst-Pauwels GW
    Biochim Biophys Acta; 1980; 595(1):126-32. PubMed ID: 6985570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics of Mg2+ flux into rat liver mitochondria.
    Diwan JJ; Dazé M; Richardson R; Aronson D
    Biochemistry; 1979 Jun; 18(12):2590-5. PubMed ID: 36136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of calcium on sodium efflux in squid axons.
    Baker PF; Blaustein MP; Hodgkin AL; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):431-58. PubMed ID: 5764407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The mechanism of sodium efflux in yeast.
    Rodríguez-Navarro A; Ortega MD
    FEBS Lett; 1982 Feb; 138(2):205-8. PubMed ID: 7040111
    [No Abstract]   [Full Text] [Related]  

  • 59. Transport of competing Na and K ions by (222) C10-cryptand, an ionizable mobile carrier: effects of pH and temperature.
    Loiseau A; Hill M; René-Corail L; Castaing M
    Biochim Biophys Acta; 1995 Sep; 1238(2):107-17. PubMed ID: 7548125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.