These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36142)

  • 61. Interaction of monovalent cations with Rb+ and Na+ uptake in yeast.
    Derks WJ; Borst-Pauwels GW
    Biochim Biophys Acta; 1980 Mar; 596(3):381-92. PubMed ID: 6988007
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+.
    Leonhard-Marek S; Stumpff F; Brinkmann I; Breves G; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G630-45. PubMed ID: 15550561
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red blood cell ghosts and the control of Na transport by internal Mg.
    Bodemann HH; Hoffman JF
    J Gen Physiol; 1976 May; 67(5):547-61. PubMed ID: 1271042
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mitochondrial oscillation and activation of H+/cation exchange.
    Bernardi P; Pozzan M; Azzone GF
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):387-403. PubMed ID: 6298197
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An ATP-dependent sodium-sodium exchange in strophanthidin poisoned dialysed squid giant axons.
    Beaugé L; DiPolo R
    J Physiol; 1981 Jun; 315():447-60. PubMed ID: 7310719
    [TBL] [Abstract][Full Text] [Related]  

  • 66. K+/H+ antiport in heart mitochondria.
    Brierley GP; Jurkowitz MS; Farooqui T; Jung DW
    J Biol Chem; 1984 Dec; 259(23):14672-8. PubMed ID: 6438102
    [TBL] [Abstract][Full Text] [Related]  

  • 67. NHE8 mediates amiloride-sensitive Na+/H+ exchange across mosquito Malpighian tubules and catalyzes Na+ and K+ transport in reconstituted proteoliposomes.
    Kang'ethe W; Aimanova KG; Pullikuth AK; Gill SS
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1501-12. PubMed ID: 17287198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sodium and sulfate ion transport in yeast vacuoles.
    Hirata T; Wada Y; Futai M
    J Biochem; 2002 Feb; 131(2):261-5. PubMed ID: 11820941
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Activation of the potassium uptake system during fermentation in Saccharomyces cerevisiae.
    Ramos J; Haro R; Alijo R; Rodríguez-Navarro A
    J Bacteriol; 1992 Mar; 174(6):2025-7. PubMed ID: 1532175
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Kinetics of ion translocation across charged membranes mediated by a two-site transport mechanism. Effects of polyvalent cations upon rubidium uptake into yeast cells.
    Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1976 Apr; 426(4):745-56. PubMed ID: 4106
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The human non-gastric H,K-ATPase has a different cation specificity than the rat enzyme.
    Swarts HG; Koenderink JB; Willems PH; De Pont JJ
    Biochim Biophys Acta; 2007 Mar; 1768(3):580-9. PubMed ID: 17137554
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Membrane effects of phenothiazines in yeasts. I. Stimulation of calcium and potassium fluxes.
    Eilam Y
    Biochim Biophys Acta; 1983 Sep; 733(2):242-8. PubMed ID: 6136300
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport.
    Armstrong WM; Rothstein A
    J Gen Physiol; 1967 Mar; 50(4):967-88. PubMed ID: 6034512
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Early changes in membrane potential of Saccharomyces cerevisiae induced by varying extracellular K(+), Na (+) or H (+) concentrations.
    Plášek J; Gášková D; Ludwig J; Höfer M
    J Bioenerg Biomembr; 2013 Dec; 45(6):561-8. PubMed ID: 24052423
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of intracellular magnesium by Mg2+ efflux.
    Güther T; Vormann J; Förster R
    Biochem Biophys Res Commun; 1984 Feb; 119(1):124-31. PubMed ID: 6422934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nystatin effects on cellular calcium in Saccharomyces cerevisiae.
    Eilam Y; Grossowicz N
    Biochim Biophys Acta; 1982 Nov; 692(2):238-43. PubMed ID: 6756477
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The inhibition of yeast enolase by Li+ and Na+1.
    Kornblatt MJ; Musil R
    Arch Biochem Biophys; 1990 Mar; 277(2):301-5. PubMed ID: 2178554
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects on mitochondrial K flux of pH, K concentration, and N-ethyl maleimide.
    Diwan JJ; Lehrer PH
    Membr Biochem; 1978; 1(1-2):43-60. PubMed ID: 41160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.