These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36142271)

  • 1. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress.
    Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and Biological Analyses Reveal the Effect on Growth under Flooding Stress of Chickpea Irradiated with Millimeter Waves.
    Komatsu S; Maruyama J; Furuya T; Yin X; Yamaguchi H; Hitachi K; Miyashita N; Tsuchida K; Tani M
    J Proteome Res; 2021 Oct; 20(10):4718-4727. PubMed ID: 34455783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.
    Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological, Biochemical, and Proteomic Analyses to Understand the Promotive Effects of Plant-Derived Smoke Solution on Wheat Growth under Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Rehman SU; Ohno T
    Plants (Basel); 2022 Jun; 11(11):. PubMed ID: 35684281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.
    Kamal AH; Komatsu S
    Mol Biol Rep; 2016 Feb; 43(2):73-89. PubMed ID: 26754663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Kono Y; Nishimura M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and iTRAQ-based quantitative proteomics analyses reveal the similarities and differences in stress responses between short-term boron deficiency and toxicity in wheat roots.
    Shi Y; Huang C; Wang X; Jin W; Wang M; Yu H
    Mol Biol Rep; 2023 Apr; 50(4):3617-3632. PubMed ID: 36795283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.
    Yin X; Nishimura M; Hajika M; Komatsu S
    J Proteome Res; 2016 Jun; 15(6):2008-25. PubMed ID: 27132649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress.
    Mustafa G; Sakata K; Hossain Z; Komatsu S
    J Proteomics; 2015 Jun; 122():100-18. PubMed ID: 25857275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.
    Yin X; Sakata K; Nanjo Y; Komatsu S
    J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress.
    Qiu Z; He Y; Zhang Y; Guo J; Wang L
    Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.
    Komatsu S; Nanjo Y; Nishimura M
    J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic and metabolomic analyses of soybean root tips under flooding stress.
    Komatsu S; Nakamura T; Sugimoto Y; Sakamoto K
    Protein Pept Lett; 2014; 21(9):865-84. PubMed ID: 24654851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.