These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36142601)

  • 1. Whole-Genome Metalloproteases in the Wheat Sharp Eyespot Pathogen
    Guo F; Pan L; Liu H; Lv L; Chen X; Liu Y; Li H; Ye W; Zhang Z
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142601
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome-Wide Identification of M35 Family Metalloproteases in
    Pan L; Wen S; Yu J; Lu L; Zhu X; Zhang Z
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340265
    [No Abstract]   [Full Text] [Related]  

  • 3. TaWAK2A-800, a Wall-Associated Kinase, Participates Positively in Resistance to Fusarium Head Blight and Sharp Eyespot in Wheat.
    Guo F; Wu T; Xu G; Qi H; Zhu X; Zhang Z
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cysteine-Rich Repeat Protein TaCRR1 Participates in Defense against Both
    Guo F; Shan Z; Yu J; Xu G; Zhang Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pathogen-Induced MATE Gene
    Su Q; Rong W; Zhang Z
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.
    Zhu X; Yang K; Wei X; Zhang Q; Rong W; Du L; Ye X; Qi L; Zhang Z
    J Exp Bot; 2015 Nov; 66(21):6591-603. PubMed ID: 26220083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot.
    Li W; Sun H; Cao S; Zhang A; Zhang H; Shu Y; Chen H
    Microbiol Spectr; 2023 Aug; 11(4):e0052223. PubMed ID: 37436153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat.
    Guo F; Wu T; Shen F; Xu G; Qi H; Zhang Z
    J Exp Bot; 2021 Oct; 72(20):6904-6919. PubMed ID: 34254642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Characterization of GH10 Family Xylanase Genes in
    Lu L; Liu Y; Zhang Z
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.
    Zhu X; Lu C; Du L; Ye X; Liu X; Coules A; Zhang Z
    Plant Biotechnol J; 2017 Jun; 15(6):674-687. PubMed ID: 27862842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Identification and Expression Analysis of Cutinase Gene Family in
    Lu L; Rong W; Massart S; Zhang Z
    Front Microbiol; 2018; 9():1813. PubMed ID: 30131789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens
    Qi H; Guo F; Lv L; Zhu X; Zhang L; Yu J; Wei X; Zhang Z
    Front Plant Sci; 2021; 12():758196. PubMed ID: 34777437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis.
    Liu X; Zhu X; Wei X; Lu C; Shen F; Zhang X; Zhang Z
    J Exp Bot; 2020 Jan; 71(1):344-355. PubMed ID: 31536614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Long Intergenic Noncoding RNAs in
    Yi K; Yan W; Li X; Yang S; Li J; Yin Y; Yuan F; Wang H; Kang Z; Han D; Zeng Q
    Microbiol Spectr; 2023 Jun; 11(3):e0344922. PubMed ID: 37036374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes.
    Shan T; Rong W; Xu H; Du L; Liu X; Zhang Z
    Sci Rep; 2016 Jul; 6():28777. PubMed ID: 27364458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat.
    Zhu X; Rong W; Wang K; Guo W; Zhou M; Wu J; Ye X; Wei X; Zhang Z
    Plant Biotechnol J; 2022 Apr; 20(4):777-793. PubMed ID: 34873799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Wall-Associated Kinase TaWAK-5D600 Positively Participates in Defense against Sharp Eyespot and
    Qi H; Zhu X; Shen W; Zhang Z
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of
    Li X; Mu K; Yang S; Wei J; Wang C; Yan W; Yuan F; Wang H; Han D; Kang Z; Zeng Q
    Mol Plant Microbe Interact; 2022 Sep; 35(9):803-813. PubMed ID: 36102883
    [No Abstract]   [Full Text] [Related]  

  • 19. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease.
    Wei X; Shen F; Hong Y; Rong W; Du L; Liu X; Xu H; Ma L; Zhang Z
    Mol Plant Pathol; 2016 Oct; 17(8):1252-64. PubMed ID: 26720854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to
    Qi H; Zhu X; Guo F; Lv L; Zhang Z
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.